login
A098999
Sum of cubes of the first n primes.
16
8, 35, 160, 503, 1834, 4031, 8944, 15803, 27970, 52359, 82150, 132803, 201724, 281231, 385054, 533931, 739310, 966291, 1267054, 1624965, 2013982, 2507021, 3078808, 3783777, 4696450, 5726751, 6819478, 8044521, 9339550, 10782447
OFFSET
1,1
FORMULA
a(n) = 0.25*n^4*log(n)^3 + O(n^4*log(n)^2*log(log(n))). The proof is similar to proof for A007504(n) (see link of Shevelev). - Vladimir Shevelev, Aug 02 2013
MATHEMATICA
P3[n_]:=Sum[Prime[i]^3, {i, 1, n}]; Table[P3[n], {n, 1, 60}]
PROG
(PARI) a(n) = sum(i=1, n, prime(i)^3); \\ Michel Marcus, Jan 20 2014
CROSSREFS
Partial sums of A030078.
Sequence in context: A302078 A320405 A279379 * A263520 A223901 A192257
KEYWORD
nonn
AUTHOR
Suzanne O' Regan (s.m.oregan(AT)student.ucc.ie), Nov 06 2004
STATUS
approved