OFFSET
0,2
COMMENTS
The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the first kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371.
Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012).
Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153.
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*(-1)^k*(k+1)^3.
E.g.f.: (1 - 7 * log(1 + x) + 6 * log(1 + x)^2 - log(1 + x)^3) / (1 + x). - Ilya Gutkovskiy, Aug 10 2021
MATHEMATICA
Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^3, {k, 0, n}], {n, 0, 25}]
PROG
(Magma) [&+[StirlingFirst(n, k)*(-1)^k*(k+1)^3: k in [0..n]]: n in [0..25]];
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^3); \\ Michel Marcus, Nov 14 2015
CROSSREFS
KEYWORD
sign
AUTHOR
Takao Komatsu, Mar 29 2013
STATUS
approved