The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A223901 Poly-Cauchy numbers of the second kind hat c_n^(-3). 3
 1, -8, 35, -161, 854, -5248, 36966, -294714, 2628600, -25963392, 281529192, -3326287848, 42546905712, -585889457328, 8643254959008, -136013600978784, 2274436197944064, -40278639752011008, 753115809287568384, -14826614346669090816, 306574242780102220800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The poly-Cauchy numbers of the second kind hat c_n^k can be expressed in terms of the (unsigned) Stirling numbers of the ﬁrst kind: hat c_n^(k) = (-1)^n*sum(abs(stirling1(n,m))/(m+1)^k, m=0..n). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Takao Komatsu, Poly-Cauchy numbers with a q parameter, Ramanujan J. 31 (2013), 353-371. Takao Komatsu, Poly-Cauchy numbers, RIMS Kokyuroku 1806 (2012). Takao Komatsu, Poly-Cauchy numbers, Kyushu J. Math. 67 (2013), 143-153. FORMULA a(n) = sum(stirling1(n,k)*(-1)^k*(k+1)^3, k=0..n). MATHEMATICA Table[Sum[StirlingS1[n, k] (-1)^k (k + 1)^3, {k, 0, n}], {n, 0, 25}] PROG (MAGMA) [&+[StirlingFirst(n, k)*(-1)^k*(k+1)^3: k in [0..n]]: n in [0..25]]; (PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(-1)^k*(k+1)^3); \\ Michel Marcus, Nov 14 2015 CROSSREFS Cf. A222636. Sequence in context: A279379 A098999 A263520 * A192257 A297609 A000426 Adjacent sequences:  A223898 A223899 A223900 * A223902 A223903 A223904 KEYWORD sign AUTHOR Takao Komatsu, Mar 29 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)