login
A186681
Total number of n-digit numbers requiring 17 positive biquadrates in their representation as sum of biquadrates.
17
0, 3, 30, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
1,2
COMMENTS
A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + a(n) + A186683(n) + A186685(n) = A052268(n)
a(n) = 0 for n >= 6. - Nathaniel Johnston, May 09 2011
FORMULA
a(n) = A186680(n) - A186680(n-1).
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Martin Renner, Feb 25 2011
STATUS
approved