login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028296 E.g.f. Gudermannian(x) = 2*arctan(exp(x)) - Pi/2. 17
1, -1, 5, -61, 1385, -50521, 2702765, -199360981, 19391512145, -2404879675441, 370371188237525, -69348874393137901, 15514534163557086905, -4087072509293123892361, 1252259641403629865468285 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Euler numbers A000364 with alternating signs.

The first column of the inverse to the matrix with entries C(2*i,2*j), i,j >=0. The full matrix is lower triangular with the i-th sundiagonal having entries a(i)*C(2*j,2*i) j>=i. - Nolan Wallach (nwallach(AT)ucsd.edu), Dec 26 2005

This sequence is also EulerE(2*n). - Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 14 2006

Consider the sequence defined by a(0)=1; thereafter a(n) = 2*Sum_{k=1..n} binomial(2n,2k)*a(n-k). For k = -3, -2, -1, 1, 2, 3 this is A210676, A210657, A028296, A094088, A210672, A210674.

REFERENCES

Gradshteyn and Ryzhik, Tables, 5th ed., Section 1.490, pp. 51-52.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

F. Callegaro, G. Gaiffi, On models of the braid arrangement and their hidden symmetries, arXiv preprint arXiv:1406.1304, 2014

A. L. Edmonds and S, Klee, The combinatorics of hyperbolized manifolds, arXiv preprint arXiv:1210.7396, 2012. - From N. J. A. Sloane, Jan 02 2013

N. E. Noerlund, Vorlesungen ueber Differenzenrechnung, Springer 1924, p. 25.

Zhi-Hong Sun, On the further properties of {U_n}, arXiv:1203.5977v1, Mar 27 2012.

FORMULA

E.g.f.: sech(x) = 1/cosh(x), or gd(x).

Recurrence: a(n) = -sum(i=0..n-1, a(i)*C(2*n, 2*i) ). - Ralf Stephan, Feb 24 2005

a(n) = sum_{k=1,3,5,..,2n+1} (-1)^((k-1)/2) /(2^k*k) *sum_{i=0..k} (-1)^i*(k-2*i)^(2n+1) *binomial(k,i); [Vladimir Kruchinin, Apr 20 2011]

a(n) = 2^(4*n+1)*(zeta(-2*n,1/4)-zeta(-2*n,3/4)). - [Gerry Martens, May 27 2011]

G.f.: A(x) = 1 - x/(S(0)+x), S(k) = euler(2*k) + x*euler(2*k+2) - x*euler(2*k)*euler(2*k+4)/S(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011

E.g.f.: E(x) = 1 - x/(S(0)+x); S(k) = (k+1)*euler(2*k) + x*euler(2*k+2) - x*(k+1)*euler(2*k)*euler(2*k+4)/S(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011

2*arctan(exp(z))-Pi/2 = z*(1 - z^2/(G(0) + z^2)), G(k) = 2*(k+1)*(2*k+3)*euler(2*k) + z^2*euler(2*k+2) - 2*z^2*(k+1)*(2*k+3)*euler(2*k)*euler(2*k+4)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011

G.f.: A(x) = 1/S(0) where S(k) = 1+x*(k+1)^2/S(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jun 22 2012

From Sergei N. Gladkovskii, Sep 27 2012 (Start)

G.f.: 1/Q(0) where Q(k)= 1 - x*k*(3*k-1) - x*(k+1)*(2*k+1)*(x*k^2-1)/Q(k+1) ; (continued fraction, Euler's 1st kind, 1-step).

E.g.f.:(2 - x^4/( (x^2+2)*Q(0) + 2))/(2+x^2) where Q(k)=  4*k + 4 + 1/( 1 - x^2/( 2 + x^2 + (2*k+3)*(2*k+4)/Q(k+1))); (continued fraction, Euler's 1st kind, 3-step).

(End)

E.g.f.: 1/cosh(x)=8*(1-x^2)/(8 - 4*x^2 - x^4*U(0))  where U(k)= 1 + 4*(k+1)*(k+2)/(2*k+3 - x^2*(2*k+3)/(x^2 + 8*(k+1)*(k+2)*(k+3)/U(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 30 2012

G.f.: 1/U(0) where U(k) = 1 - x + x*(2*k+1)*(2*k+2)/(1 + x*(2*k+1)*(2*k+2)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 15 2012

G.f.: 1 - x/G(0) where G(k) = 1 - x + x*(2*k+2)*(2*k+3)/(1 + x*(2*k+2)*(2*k+3)/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Oct 16 2012

G.f.: 1/Q(0), where Q(k) = 1 - sqrt(x) + sqrt(x)*(k+1)/(1-sqrt(x)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 21 2013

G.f.: (1/Q(0) + 1)/(1-sqrt(x)), where Q(k)= 1 - 1/sqrt(x) + (k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 26 2013

G.f.: Q(0), where Q(k) = 1 - x*(k+1)^2/( x*(k+1)^2 + 1/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Oct 09 2013

a(n) ~ (-1)^n * (2*n)! * 2^(2*n+2) / Pi^(2*n+1). - Vaclav Kotesovec, Aug 04 2014

EXAMPLE

gd x = x - 1/6*x^3 + 1/24*x^5 - 61/5040*x^7 + 277/72576*x^9 + ....

MAPLE

A028296 := proc(n) a :=0 ; for k from 1 to 2*n+1 by 2 do a := a+(-1)^((k-1)/2)/2^k/k *add( (-1)^i *(k-2*i)^(2*n+1) *binomial(k, i), i=0..k) ; end do: a ; end proc:

seq(A028296(n), n=0..10) ; # R. J. Mathar, Apr 20 2011

MATHEMATICA

Table[EulerE[2*n], {n, 0, 30}] (* Paul Abbott, Apr 14 2006 *)

Table[(CoefficientList[Series[1/Cosh[x], {x, 0, 40}], x]*Range[0, 40]!)[[2*n+1]], {n, 0, 20}] (* Vaclav Kotesovec, Aug 04 2014*)

PROG

(Maxima)

a(n):=sum((-1+(-1)^(k))*(-1)^((k+1)/2)/(2^(k+1)*k)*sum((-1)^i*(k-2*i)^n*binomial(k, i), i, 0, k), k, 1, n); /* with interpolated zeros, Vladimir Kruchinin, Apr 20 2011 */

CROSSREFS

Absolute values are the Euler numbers A000364.

Sequence in context: A196125 A096537 A115047 * A000364 A159316 A231798

Adjacent sequences:  A028293 A028294 A028295 * A028297 A028298 A028299

KEYWORD

sign,easy,nice,changed

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 08:10 EST 2014. Contains 250159 sequences.