login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055505 Numerators in expansion of (1-x)^(-1/x)/e. 4
1, 1, 11, 7, 2447, 959, 238043, 67223, 559440199, 123377159, 29128857391, 5267725147, 9447595434410813, 1447646915836493, 225037938358318573, 29911565062525361, 3651003047854884043877, 38950782815463986767 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

From Miklos Kristof, Nov 04 2007: (Start) This is also the sequence of numerators associated with expansion of (1+x)^(1/x).

(1 + x)^(1/x)=exp(1)*(1 - 1/2*x + 11/24*x^2 - 7/16*x^3 + 2447/5760*x^4 - 959/2304*x^5 + 238043/580608*x^6 - ...).

(1+x)^(1/x)=exp(log(1+x)/x)=exp(1)*exp(-x/2)*exp(x^2/3)*exp(x^3/4)*...

Let a(n) be this sequence, let b(n) be A055535. Then (1+x)^(1/x)=exp(1)*a(n)/b(n) x^n.

a(n)/b(n) = sum(s(i,i-n)/(i !), i=n,...,infinity),... where s(n,m) is a Stirling number of the first kind.

exp(1)=1+sum(s(i,i)/i !, i=1,... infinity), for the n=1 case.

a(1)/b(1)=1/1 because 1+1/1!+1/2!+1/3!+1/4!+...=exp(1)

a(2)/b(2)=1/2 because 1/2!+3/3!+6/4!+10/5!+...=1/2*exp(1)

a(3)/b(3)=11/24 because 2/3!+11/4!+35/5!+85/6!+...=11/24*exp(1)

a(4)/b(4)=7/16 because 6/4!+50/5!+225/6!+735/7!+...=7/16*exp(1) (End)

REFERENCES

Markus Brede, On the convergence of the sequence defining Euler's number, Math. Intelligencer, 27, no. 3 (2005), 6-7.

Chen, Chao-Ping; Choi, Junesang. An Asymptotic Formula for (1+1/x)^x Based on the Partition Function. Amer. Math. Monthly 121 (2014), no. 4, 338--343. MR3183017.

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11.

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.1.

LINKS

Table of n, a(n) for n=0..17.

FORMULA

See Maple line for formula.

EXAMPLE

1+1/2*x+11/24*x^2+7/16*x^3+2447/5760*x^4+...

1, -1/2, 11/24, -7/16, 2447/5760, -959/2304, 238043/580608, -67223/165888, ...

MAPLE

T:= proc(u) local k, l; add( stirling1(u+k, k)*((u+k)!)^(-1)* add( (-1)^l/l!, l=0..u-k), k=0..u); end;

MATHEMATICA

a[n_] := Sum[StirlingS1[n+k, k]/(n+k)!*Sum[(-1)^j/j!, {j, 0, n-k}], {k, 0, n}]; Table[a[n] // Numerator // Abs, {n, 0, 17}] (* Jean-Fran├žois Alcover, Mar 04 2014, after Maple *)

CROSSREFS

Cf. A055535, A094638, A130534, A055535 (denominators).

See also A239897/A239898.

Sequence in context: A060954 A038321 A002749 * A159526 A090841 A085757

Adjacent sequences:  A055502 A055503 A055504 * A055506 A055507 A055508

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Jul 11 2000

EXTENSIONS

Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified September 23 01:51 EDT 2014. Contains 247086 sequences.