This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055505 Numerators in expansion of (1-x)^(-1/x)/e. 6
 1, 1, 11, 7, 2447, 959, 238043, 67223, 559440199, 123377159, 29128857391, 5267725147, 9447595434410813, 1447646915836493, 225037938358318573, 29911565062525361, 3651003047854884043877, 38950782815463986767 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Miklos Kristof, Nov 04 2007: (Start) This is also the sequence of numerators associated with expansion of (1+x)^(1/x). (1 + x)^(1/x) = exp(1)*(1 - 1/2*x + 11/24*x^2 - 7/16*x^3 + 2447/5760*x^4 - 959/2304*x^5 + 238043/580608*x^6 - ...). (1+x)^(1/x) = exp(log(1+x)/x) = exp(1)*exp(-x/2)*exp(x^2/3)*exp(x^3/4)*... Let a(n) be this sequence, let b(n) be A055535. Then (1+x)^(1/x)=exp(1)*a(n)/b(n) x^n. a(n)/b(n) = Sum_{i>=n} s(i,i-n)/i! where s(n,m) is a Stirling number of the first kind. exp(1) = 1 + Sum_{i>=1} s(i,i)/i!, for the n=1 case. a(1)/b(1) = 1/1 because 1+1/1!+1/2!+1/3!+1/4!+... = exp(1) a(2)/b(2) = 1/2 because 1/2!+3/3!+6/4!+10/5!+... = 1/2*exp(1) a(3)/b(3) = 11/24 because 2/3!+11/4!+35/5!+85/6!+... = 11/24*exp(1) a(4)/b(4) = 7/16 because 6/4!+50/5!+225/6!+735/7!+... = 7/16*exp(1) (End) REFERENCES L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11. S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.1. LINKS G. C. Greubel, Table of n, a(n) for n = 0..250 Markus Brede, On the convergence of the sequence defining Euler's number, Math. Intelligencer, 27, no. 3 (2005), 6-7. Chao-Ping Chen and Junesang Choi, An Asymptotic Formula for (1+1/x)^x Based on the Partition Function, Amer. Math. Monthly 121 (2014), no. 4, 338--343. MR3183017. Branko Malesevic, Yue Hu, Cristinel Mortici, Accurate Estimates of (1+x)^{1/x} Involved in Carleman Inequality and Keller Limit, arXiv:1801.04963 [math.CA], 2018. FORMULA See Maple line for formula. EXAMPLE 1+1/2*x+11/24*x^2+7/16*x^3+2447/5760*x^4+... 1, -1/2, 11/24, -7/16, 2447/5760, -959/2304, 238043/580608, -67223/165888, ... MAPLE T:= proc(u) local k, l; add( Stirling1(u+k, k)*((u+k)!)^(-1)* add( (-1)^l/l!, l=0..u-k), k=0..u); end; MATHEMATICA a[n_] := Sum[StirlingS1[n+k, k]/(n+k)!*Sum[(-1)^j/j!, {j, 0, n-k}], {k, 0, n}]; Table[a[n] // Numerator // Abs, {n, 0, 17}] (* Jean-François Alcover, Mar 04 2014, after Maple *) Numerator[((1-x)^(-1/x)/E + O[x]^20)[[3]]] (* or *) Numerator[Table[Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}] (-1)^n/(2n)!, {n, 0, 10}]] (* Vladimir Reshetnikov, Sep 23 2016 *) CROSSREFS Cf. A094638, A130534, A055535 (denominators). See also A239897/A239898. Cf. A276977. Sequence in context: A298438 A262866 A002749 * A159526 A090841 A085757 Adjacent sequences:  A055502 A055503 A055504 * A055506 A055507 A055508 KEYWORD nonn,frac AUTHOR N. J. A. Sloane, Jul 11 2000 EXTENSIONS Edited by N. J. A. Sloane, Jul 01 2008 at the suggestion of R. J. Mathar STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 16 03:17 EST 2018. Contains 318158 sequences. (Running on oeis4.)