login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055535 Denominators in expansion of (1-x)^(-1/x)/e. 6
1, 2, 24, 16, 5760, 2304, 580608, 165888, 1393459200, 309657600, 73574645760, 13377208320, 24103053950976000, 3708162146304000, 578473294823424000, 77129772643123200, 9440684171518279680000, 100969884187361280000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Or, equally, denominators in expansion of (1+x)^(1/x)/e.

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 293, Problem 11.

S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.1.

LINKS

Robert Israel, Table of n, a(n) for n = 0..377

Chao-Ping Chen and Junesang Choi, An Asymptotic Formula for (1+1/x)^x Based on the Partition Function, Amer. Math. Monthly 121 (2014), no. 4, 338--343. MR3183017.

FORMULA

From Miklos Kristof, Nov 04 2007 (Start):

(1+x)^(1/x) = exp(log(1+x)/x) = exp(1)*exp(-x/2)*exp(x^2/3)*exp(x^3/4)*...

Let a(n) be A055505, let b(n) be this sequence. Then (1+x)^(1/x) = exp(1)*a(n)/b(n) x^n.

a(n)/b(n) = Sum_{i>=n} s(i,i-n)/i! where s(n,m) is a Stirling number of the first kind.

exp(1) = 1 + Sum_{i>=1} s(i,i)/i! for the n = 1 case.

a(1)/b(1) = 1/1 because 1+1/1!+1/2!+1/3!+1/4!+... = exp(1)

a(2)/b(2) = 1/2 because 1/2!+3/3!+6/4!+10/5!+... = 1/2*exp(1)

a(3)/b(3) = 11/24 because 2/3!+11/4!+35/5!+85/6!+... = 11/24*exp(1)

a(4)/b(4) = 7/16 because 6/4!+50/5!+225/6!+735/7!+... = 7/16*exp(1) (End)

EXAMPLE

(1-x)^(-1/x) = exp(1)*(1 + 1/2*x + 11/24*x^2 + 7/16*x^3 + 2447/5760*x^4 + 959/2304*x^5 + 238043/580608*x^6 + ...).

MAPLE

G:= (1-x)^(-1/x)/exp(1):

S:= series(G, x, 32):

seq(denom(coeff(S, x, j)), j=0..30); # Robert Israel, Sep 23 2016

MATHEMATICA

a[n_] := Sum[StirlingS1[n+k, k]/(n+k)!*Sum[(-1)^j/j!, {j, 0, n-k}], {k, 0, n}]; Table[a[n] // Denominator, {n, 0, 17}] (* Jean-Fran├žois Alcover, Mar 04 2014 *)

Denominator[((1+x)^(1/x)/E + O[x]^20)[[3]]] (* or *)

Denominator[Table[Sum[StirlingS1[n+k, k] Subfactorial[n-k] Binomial[2n, n+k], {k, 0, n}]/(2n)!, {n, 0, 10}]] (* Vladimir Reshetnikov, Sep 23 2016 *)

CROSSREFS

Cf. A094638, A130534, A055505 (numerators), A276977.

Sequence in context: A075267 A002743 A220773 * A072217 A229429 A052686

Adjacent sequences:  A055532 A055533 A055534 * A055536 A055537 A055538

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Jul 11 2000

EXTENSIONS

Edited by N. J. A. Sloane, Jul 25 2008 at the suggestion of R. J. Mathar and Eric Rowland

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:34 EST 2016. Contains 278874 sequences.