login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007595 a(n) = C_n / 2 if n is even or ( C_n + C_((n-1)/2) ) / 2 if n is odd, where C = Catalan numbers (A000108).
(Formerly M2681)
16
1, 1, 3, 7, 22, 66, 217, 715, 2438, 8398, 29414, 104006, 371516, 1337220, 4847637, 17678835, 64823110, 238819350, 883634026, 3282060210, 12233141908, 45741281820, 171529836218, 644952073662, 2430973304732, 9183676536076, 34766775829452, 131873975875180 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Number of necklaces of 2 colors with 2n beads and n-1 black ones. - Wouter Meeussen, Aug 03 2002

Number of rooted planar binary trees up to reflection (trees with n internal nodes, or a total of 2n+1 nodes). - Antti Karttunen, Aug 19 2002

Number of even permutations avoiding 132.

Number of Dyck paths of length 2n having an even number of peaks at even height. Example: a(3)=3 because we have UDUDUD, U(UD)(UD)D and UUUDDD, where U=(1,1), D=(1,-1) and the peaks at even height are shown between parentheses. - Emeric Deutsch, Nov 13 2004

Number of planar trees (A002995) on n edges with one distinguished edge. - David Callan, Oct 08 2005

Assuming offset 0 this is an analog of A275165: pairs of two Catalan nestings with index sum n. - R. J. Mathar, Jul 19 2016

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..200

Peter J. Cameron, Some treelike objects Quart. J. Math. Oxford Ser., Vol. 38, No. 2 (1987), pp. 155-183. Note that line 3 on p. 163 has a typo. - N. J. A. Sloane, Apr 18 2014

Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seq., Vol. 3 (2000), Article 00.1.5.

Paul Drube and Puttipong Pongtanapaisan, Annular Non-Crossing Matchings, Journal of Integer Sequences, Vol. 19 (2016), Article 16.2.4.

Andrew Gainer-Dewar, PĆ³lya theory for species with an equivariant group action, arXiv preprint arXiv:1401.6202 [math.CO], 2014.

Toufik Mansour, Counting occurrences of 132 in an even permutation, arXiv:math/0211205 [math.CO], 2002.

FORMULA

G.f.: (2-2*x-sqrt(1-4*x)-sqrt(1-4*x^2))/x/4. - Vladeta Jovovic, Sep 26 2003

D-finite with recurrence: n*(n+1)*a(n) -6*n*(n-1)*a(n-1) +4*(2*n^2-10*n+9)*a(n-2) +8*(n^2+n-9)*a(n-3) -48*(n-3)*(n-4)*a(n-4) +32*(2*n-9)*(n-5)*a(n-5)=0. - R. J. Mathar, Jun 03 2014, adapted to offset Feb 20 2020

a(n) ~ 4^n /(2*sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Jul 19 2016

a(2n) = A000150(2n). - R. J. Mathar, Jul 19 2016

a(n) = (A000108(n) + 2^n * binomial(1/2, (n+1)/2) * sin(Pi*n/2))/2. - Vladimir Reshetnikov, Oct 03 2016

Sum_{n>=1} a(n)/4^n = (3-sqrt(3))/2 (A334843). - Amiram Eldar, Mar 20 2022

MAPLE

A007595 := n -> (1/2)*(Cat(n) + (`mod`(n, 2)*Cat((n-1)/2))); Cat := n -> binomial(2*n, n)/(n+1);

MATHEMATICA

Table[(Plus@@(EulerPhi[ # ]Binomial[2n/#, (n-1)/# ] &)/@Intersection[Divisors[2n], Divisors[n-1]])/(2n), {n, 2, 32}] (* or *) Table[If[EvenQ[n], CatalanNumber[n]/2, (CatalanNumber[n] + CatalanNumber[(n-1)/2])/2], {n, 24}]

Table[(CatalanNumber[n] + 2^n Binomial[1/2, (n + 1)/2] Sin[Pi n/2])/2, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)

Table[If[EvenQ[n], CatalanNumber[n]/2, (CatalanNumber[n]+CatalanNumber[(n-1)/2])/2], {n, 30}] (* Harvey P. Dale, Sep 06 2021 *)

PROG

(PARI) catalan(n) = binomial(2*n, n)/(n+1);

a(n) = if (n % 2, (catalan(n) + catalan((n-1)/2))/2, catalan(n)/2); \\ Michel Marcus, Jan 23 2016

CROSSREFS

a(n) = A047996(2*n, n-1) for n >= 1 and a(n) = A072506(n, n-1) for n >= 2.

Occurs in A073201 as rows 0, 2, 4, etc. (with a(0)=1 included).

Cf. also A003444, A007123.

Cf. A000108, A000150, A334843.

Sequence in context: A092566 A036719 A166135 * A148681 A148682 A148683

Adjacent sequences:  A007592 A007593 A007594 * A007596 A007597 A007598

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Description corrected by Reiner Martin and Wouter Meeussen, Aug 04 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 16:01 EDT 2022. Contains 357226 sequences. (Running on oeis4.)