

A007592


Hyperperfect numbers: n = m(sigma(n)n1)+1 for some m > 1.
(Formerly M5113)


6



21, 301, 325, 697, 1333, 1909, 2041, 2133, 3901, 10693, 16513, 19521, 24601, 26977, 51301, 96361, 130153, 159841, 163201, 176661, 214273, 250321, 275833, 296341, 306181, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833, 1063141, 1232053
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

D. Minoli, Sufficient Forms For Generalized Perfect Numbers, Ann. Fac. Sciences, Univ. Nation. Zaire, Section Mathem; Vol. 4, No. 2, Dec 1978, pp. 277302.
D. Minoli, New Results For Hyperperfect Numbers, Abstracts American Math. Soc., October 1980, Issue 6, Vol. 1, pp. 561.
D. Minoli, Issues in nonlinear hyperperfect numbers, Math. Comp., 34 (1980), 639645.
D. Minoli and Robert Bear, Hyperperfect Numbers, Pi Mu Epsilon Journal, Fall 1975, pp. 153157.
D. Minoli and W. Nakamine, Mersenne Numbers Rooted On 3 For Number Theoretic Transforms, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 177.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Donovan Johnson, Table of n, a(n) for n = 1..10000
J. S. McCranie, A study of hyperperfect numbers, J. Int. Seqs. Vol. 3 (2000) #P00.1.3
D. Minoli, Structural Issues For Hyperperfect Numbers, Fibonacci Quarterly, Feb. 1981, Vol. 19, No. 1, pp. 614.
Eric Weisstein's World of Mathematics, Hyperperfect Number.


MATHEMATICA

hpnQ[n_]:=Module[{den=DivisorSigma[1, n]n1, c}, If[den!=0, c=(n1)/den, c=Pi]; IntegerQ[c]&&c>1]; Select[Range[1250000], hpnQ] (* Harvey P. Dale, Aug 11 2012 *)


CROSSREFS

See A034897 (for m >= 1).
Sequence in context: A021604 A025935 A077506 * A019664 A019839 A077513
Adjacent sequences: A007589 A007590 A007591 * A007593 A007594 A007595


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Jud McCranie Oct 15 1997.


STATUS

approved



