login
A034897
Hyperperfect numbers: x such that x = 1 + k*(sigma(x)-x-1) for some k > 0.
10
6, 21, 28, 301, 325, 496, 697, 1333, 1909, 2041, 2133, 3901, 8128, 10693, 16513, 19521, 24601, 26977, 51301, 96361, 130153, 159841, 163201, 176661, 214273, 250321, 275833, 296341, 306181, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833
OFFSET
1,1
COMMENTS
k=1 gives the perfect numbers, A000396. For a general k, they are called k-hyperperfect. - Jud McCranie, Aug 06 2019
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Sect. B2.
J. Roberts, Lure of the Integers, see Integer 28, p. 177.
LINKS
Jud McCranie and Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 2190 terms from Jud McCranie)
J. S. McCranie, A study of hyperperfect numbers, J. Int. Seqs. Vol. 3 (2000) #P00.1.3.
Eric Weisstein's World of Mathematics, Hyperperfect Number.
EXAMPLE
21 = 1 + 2*(sigma(21)-21-1), so 21 is 2-hyperperfect. - Jud McCranie, Aug 06 2019
MATHEMATICA
hpnQ[n_]:=Module[{c=DivisorSigma[1, n]-n-1}, c>0&&IntegerQ[(n-1)/c]]; Select[Range[2, 809000], hpnQ] (* Harvey P. Dale, Jan 17 2012 *)
PROG
(PARI) forcomposite(n=2, 2*10^6, if(1==Mod(n, sigma(n)-n-1), print1(n", "))) \\ Hans Loeblich, May 07 2019
(Python)
from itertools import count, islice
from sympy import isprime, divisor_sigma
def A034897_gen(): # generator of terms
return (n for n in count(2) if not isprime(n) and (n-1) % (divisor_sigma(n)-n-1) == 0)
A034897_list = list(islice(A034897_gen(), 10)) # Chai Wah Wu, Feb 18 2022
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More complete name from Jud McCranie, Aug 06 2019
STATUS
approved