login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034897 Hyperperfect numbers: x such that x = 1 + k*(sigma(x)-x-1) for some k > 0. 10
6, 21, 28, 301, 325, 496, 697, 1333, 1909, 2041, 2133, 3901, 8128, 10693, 16513, 19521, 24601, 26977, 51301, 96361, 130153, 159841, 163201, 176661, 214273, 250321, 275833, 296341, 306181, 389593, 486877, 495529, 542413, 808861, 1005421, 1005649, 1055833 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

k=1 gives the perfect numbers, A000396. For a general k, they are called k-hyperperfect. - Jud McCranie, Aug 06 2019

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, Sect. B2.

J. Roberts, Lure of the Integers, see Integer 28, p. 177.

LINKS

Jud McCranie and Donovan Johnson, Table of n, a(n) for n = 1..10000 (first 2190 terms from Jud McCranie)

J. S. McCranie, A study of hyperperfect numbers, J. Int. Seqs. Vol. 3 (2000) #P00.1.3.

Eric Weisstein's World of Mathematics, Hyperperfect Number.

Wikipedia, Hyperperfect number

EXAMPLE

21 = 1 + 2*(sigma(21)-21-1), so 21 is 2-hyperperfect. - Jud McCranie, Aug 06 2019

MATHEMATICA

hpnQ[n_]:=Module[{c=DivisorSigma[1, n]-n-1}, c>0&&IntegerQ[(n-1)/c]]; Select[Range[2, 809000], hpnQ] (* Harvey P. Dale, Jan 17 2012 *)

PROG

(PARI) forcomposite(n=2, 2*10^6, if(1==Mod(n, sigma(n)-n-1), print1(n", "))) \\ Hans Loeblich, May 07 2019

CROSSREFS

Cf. A034898, A007592, A019279.

Sequence in context: A132184 A143322 A246544 * A287165 A280296 A325407

Adjacent sequences:  A034894 A034895 A034896 * A034898 A034899 A034900

KEYWORD

nonn,nice

AUTHOR

Jud McCranie

EXTENSIONS

More complete name from Jud McCranie, Aug 06 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 06:06 EST 2019. Contains 329217 sequences. (Running on oeis4.)