

A143322


A positive integer n is included if the sum of the distinct prime divisors of n divides n1.


1



6, 21, 28, 36, 50, 96, 99, 216, 225, 301, 325, 352, 400, 441, 486, 495, 496, 576, 630, 676, 697, 784, 847, 925, 1225, 1296, 1333, 1521, 1536, 1587, 1695, 1701, 1792, 1909, 2025, 2041, 2133, 2145, 2500, 2601, 2624, 2916, 2926, 3025, 3200, 3220, 3276, 3456
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..48.


EXAMPLE

The distinct primes dividing 28 are 2 and 7, since 28 is factored as 2^2 *7^1. 2+7=9 is a divisor of 281 = 27. So 28 is included in this sequence.


MAPLE

with(numtheory): a:=proc(n) local f: f:= factorset(n): if `mod`(n1, add(f[i], i=1..nops(f)))=0 then n else end if end proc: seq(a(n), n=2..4000); [From Emeric Deutsch, Aug 16 2008]


CROSSREFS

Cf. A008472, A089352, A143321.
Sequence in context: A020880 A046467 A132184 * A034897 A239920 A173622
Adjacent sequences: A143319 A143320 A143321 * A143323 A143324 A143325


KEYWORD

nonn


AUTHOR

Leroy Quet, Aug 07 2008


EXTENSIONS

Extended by Emeric Deutsch, Aug 16 2008


STATUS

approved



