login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092566 Main diagonal of triangle A092565, in which the n-th row polynomial equals the numerator of the n-th convergent of the continued fraction [1 + x + x^2; 1 + x + x^2, 1 + x + x^2, ...]. 34
1, 1, 3, 7, 22, 63, 191, 573, 1752, 5372, 16597, 51465, 160258, 500551, 1567881, 4922687, 15488481, 48821964, 154147654, 487412324, 1543231353, 4891986889, 15524303265, 49314008259, 156791992914, 498931763064, 1588891019625 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

T(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0), (2,0), (1,1), and (1,2). - Joerg Arndt, Jun 30 2011

Diagonal of rational function 1/(1 - (x + x^2 + x*y + x*y^2)). - Gheorghe Coserea, Aug 06 2018

LINKS

Table of n, a(n) for n=0..26.

FORMULA

a(n) = sum(k=0..n, A037027(n, k)*C(k, n-k) ).

O.g.f. A(x) satisfies the equation (27*x^4 - 14*x^3 + 9*x^2 + 14*x - 5)*A(x)^3 + (4-3*x)*A(x) + 1 = 0. - Mark van Hoeij, Apr 16 2013

MAPLE

series(RootOf((27*x^4-14*x^3+9*x^2+14*x-5)*y^3+(4-3*x)*y+1, y), x=0, 30); # Mark van Hoeij, Apr 16 2013

MATHEMATICA

A037027[n_, k_] := Sum[Binomial[k+j, k]*Binomial[j, n-j-k], {j, 0, n-k}]; A037027[n_, 0] = Fibonacci[n+1]; a[n_] := Sum[A037027[n, k]*Binomial[k, n-k], {k, 0, n}]; Table[a(n), {n, 0, 26}] (* Jean-François Alcover, Jul 18 2011 *)

PROG

(PARI) a(n)=if(n<0, 0, polcoeff(contfracpnqn(vector(n, i, 1+x+x^2))[1, 1], n, x))

(PARI) A037027(n, k)=if(n<k || k<0, 0, sum(j=0, n-k, binomial(j+k, k)*binomial(j, n- j-k))) a(n)=sum(k=0, n, A037027(n, k)*binomial(k, n-k))

(PARI) /* computation as lattice paths: */

N=40; /* that many terms */

B=matrix(N, N); B[1, 1]=1; /* whether T(n, k) memoized */

M=matrix(N, N); M[1, 1]=1; /* memoization for T(n, k) */

steps=[[1, 0], [2, 0], [1, 1], [1, 2]];

T(n, k)=

{

local(ret, dx, dy);

if ( n<0, return(0) );

if ( k<0, return(0) );

if ( B[n+1, k+1], return( M[n+1, k+1]) );

ret = 0;

for (s=1, #steps,

dx = steps[s][1];

dy = steps[s][2];

ret += T( n-dx, k-dy );

);

B[n+1, k+1] = 1;

M[n+1, k+1] = ret;

return( ret );

}

T(N-1, N-1); /* trigger computations */

for (n=1, N, print1(M[n, n], ", ")); /* show (diagonal) terms */

for(n=0, N-1, for(k=0, n, print1(T(n, k), ", "); ); print(); ); /* show triangle */

/* Joerg Arndt, Jun 30 2011 */

CROSSREFS

Cf. A092565, A037027.

Sequence in context: A229807 A229900 A079120 * A036719 A166135 A007595

Adjacent sequences:  A092563 A092564 A092565 * A092567 A092568 A092569

KEYWORD

nonn,nice

AUTHOR

Paul D. Hanna, Feb 28 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 24 00:04 EDT 2018. Contains 316541 sequences. (Running on oeis4.)