login
A288343
Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^8)).
6
1, 2, 4, 7, 12, 19, 30, 45, 67, 96, 136, 188, 258, 347, 463, 609, 795, 1025, 1313, 1665, 2099, 2624, 3262, 4026, 4945, 6035, 7332, 8859, 10660, 12764, 15226, 18083, 21402, 25230, 29647, 34713, 40525, 47155, 54719, 63307, 73056, 84074, 96524, 110536, 126301
OFFSET
0,2
COMMENTS
Number of partitions of at most n into at most 8 parts.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, 0, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -2, 0, -1, 1, 0, 2, -1, 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 0, 1, 0, -2, 1).
MATHEMATICA
CoefficientList[Series[1/((1-x)Times@@(1-x^Range[8])), {x, 0, 50}], x] (* Harvey P. Dale, Dec 06 2017 *)
PROG
(PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 8, (1-x^i)))) \\ Altug Alkan, Mar 28 2018
CROSSREFS
Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), A288342 (k=7), this sequence (k=8), A288344 (k=9), A288345 (k=10).
Cf. A288255.
Sequence in context: A288342 A347543 A343940 * A298414 A347544 A288344
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 08 2017
STATUS
approved