This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119879 Exponential Riordan array (sech(x),x). 13
 1, 0, 1, -1, 0, 1, 0, -3, 0, 1, 5, 0, -6, 0, 1, 0, 25, 0, -10, 0, 1, -61, 0, 75, 0, -15, 0, 1, 0, -427, 0, 175, 0, -21, 0, 1, 1385, 0, -1708, 0, 350, 0, -28, 0, 1, 0, 12465, 0, -5124, 0, 630, 0, -36, 0, 1, -50521, 0, 62325, 0, -12810, 0, 1050, 0, -45, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row sums have e.g.f. exp(x)*sech(x) (signed version of A009006). Inverse of masked Pascal triangle A119467. Transforms the sequence with e.g.f. g(x) to the sequence with e.g.f. g(x)*sech(x). Coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent and Bernoulli number (triangle read by rows). Another version in A153641. - Philippe Deléham, Oct 26 2013 LINKS G. C. Greubel, Rows n=0..100 of triangle, flattened P. Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, example 28. Tom Copeland, Discussion of this sequence A. Hodges and C. V. Sukumar, Bernoulli, Euler, permutations and quantum algebras, Proc. R. Soc. A Oct. 2007 vol 463 no. 463 2086 2401-2414 [Added by Tom Copeland, Aug 31 2015] P. Luschny, Additive decompositions of classical numbers via the Swiss-Knife polynomils (From Tom Copeland, Oct 20 2015) Miguel Méndez, Rafael Sánchez, On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops, arXiv:1707.00336 [math.CO}, 2017, Section 4.3, Example 4. Miguel A. Méndez, Rafael Sánchez Lamoneda, Monops, Monoids and Operads: The Combinatorics of Sheffer Polynomials, The Electronic Journal of Combinatorics 25(3) (2018), #P3.25. FORMULA Number triangle whose k-th column has e.g.f. sech(x)*x^k/k! T(n,k) = C(n,k)*2^(n-k)*E_{n-k}(1/2) where C(n,k) is the binomial coefficient and E_{m}(x) are the Euler polynomials. - Peter Luschny, Jan 25 2009 The coefficients in ascending order of x^i of the polynomials p{0}(x) = 1 and p{n}(x) = Sum_{k=0..n-1; k even} binomial(n,k)*p{k}(0)*(n mod 2 - 1 + x^(n-k)). - Peter Luschny, Jul 16 2012 E.g.f.: exp(x*z)/cosh(x). - Peter Luschny, Aug 01 2012 Sum_{k=0..n} T(n,k)*x^k = A122045(n), A155585(n), A119880(n), A119881(n) for x = 0, 1, 2, 3 respectively. - Philippe Deléham, Oct 27 2013 EXAMPLE Triangle begins:      1;      0,    1;     -1,    0,     1;      0,   -3,     0,   1;      5,    0,    -6,   0,   1;      0,   25,     0, -10,   0,   1;    -61,    0,    75,   0, -15,   0,   1;      0, -427,     0, 175,   0, -21,   0,  1;   1385,    0, -1708,   0, 350,   0, -28,  0,  1; MAPLE T := (n, k) -> binomial(n, k)*2^(n-k)*euler(n-k, 1/2): # Peter Luschny, Jan 25 2009 MATHEMATICA T[n_, k_] := Binomial[n, k] 2^(n-k) EulerE[n-k, 1/2]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, after Peter Luschny *) PROG (Sage) @CachedFunction def A119879_poly(n, x) :     return 1 if n == 0  else add(A119879_poly(k, 0)*binomial(n, k)*(x^(n-k)-1+n%2) for k in range(n)[::2]) def A119879_row(n) :     R = PolynomialRing(ZZ, 'x')     return R(A119879_poly(n, x)).coeffs()  # Peter Luschny, Jul 16 2012 # Alternatively: (Sage) # The function riordan_array is defined in A256893. riordan_array(sech(x), x, 9, exp=true) # Peter Luschny, Apr 19 2015 (PARI) {T(n, k) = binomial(n, k)*2^(n-k)*(2/(n-k+1))*(subst(bernpol(n-k+1, x), x, 1/2) - 2^(n-k+1)*subst(bernpol(n-k+1, x), x, 1/4))}; for(n=0, 5, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Feb 25 2019 CROSSREFS Row sums are A155585. - Johannes W. Meijer, Apr 20 2011 Rows reversed: A081658. Cf. A109449, A153641, A162660. - Philippe Deléham, Oct 26 2013 Cf. A000182, A046802, A119467, A133314. Sequence in context: A207543 A191532 A179552 * A115714 A020768 A246182 Adjacent sequences:  A119876 A119877 A119878 * A119880 A119881 A119882 KEYWORD easy,sign,tabl AUTHOR Paul Barry, May 26 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:15 EDT 2019. Contains 328267 sequences. (Running on oeis4.)