login
A294443
Number of distinct numbers appearing as numerators in row n of Kepler's triangle A294442.
6
1, 1, 2, 3, 5, 7, 13, 20, 31, 48, 78, 118, 191, 300, 465, 734, 1175, 1850, 2926, 4597, 7296, 11552, 18278, 28863, 45832, 72356, 114742, 181721
OFFSET
0,3
COMMENTS
It would be nice to have a formula or recurrence.
EXAMPLE
Row 4 of A294442 contains eight fractions: 1/5, 4/5, 3/7, 4/7, 2/7, 2/7, 3/8, 5/8.
There are five distinct numerators, so a(4) = 5.
MAPLE
# S[n] is the list of fractions, written as pairs [i, j], in row n of Kepler's triangle; nc is the number of distinct numerators, and dc the number of distinct denominators
S[0]:=[[1, 1]]; S[1]:=[[1, 2]];
nc:=[1, 1]; dc:=[1, 1];
for n from 2 to 18 do
S[n]:=[];
for k from 1 to nops(S[n-1]) do
t1:=S[n-1][k];
a:=[t1[1], t1[1]+t1[2]];
b:=[t1[2], t1[1]+t1[2]];
S[n]:=[op(S[n]), a, b];
od:
listn:={};
for k from 1 to nops(S[n]) do listn:={op(listn), S[n][k][1]}; od:
c:=nops(listn); nc:=[op(nc), c];
listd:={};
for k from 1 to nops(S[n]) do listd:={op(listd), S[n][k][2]}; od:
c:=nops(listd); dc:=[op(dc), c];
od:
nc; # A294443
dc; # A294444
MATHEMATICA
Map[Length@ Union@ Numerator@ # &, #] &@ Nest[Append[#, Flatten@ Map[{#1/(#1 + #2), #2/(#1 + #2)} & @@ {Numerator@ #, Denominator@ #} &, Last@ #]] &, {{1/1}, {1/2}}, 21] (* Michael De Vlieger, Apr 18 2018 *)
CROSSREFS
Cf. A294442, A294444, A295783 (first differences).
See A293160 for a similar sequence related to the Stern-Brocot triangle A002487.
Sequence in context: A104189 A301776 A178570 * A293160 A249309 A250253
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Nov 20 2017
EXTENSIONS
a(22)-a(28) from Michael De Vlieger, Apr 18 2018
STATUS
approved