login
A294445
a(n) = (2*n + 4)!*(n^2 + 11*n + 2)/(2*(n-1)!*(n+6)!).
1
1, 14, 110, 682, 3731, 18928, 91392, 426360, 1939938, 8662214, 38119510, 165828390, 714707175, 3056887680, 12991772640, 54919766160, 231102342990, 968661801900, 4046295064812, 16851791934516, 69999056422526, 290085110464864, 1199652675300800, 4951946963738320, 20406434266878660
OFFSET
1,2
LINKS
M. Bauer and O. Golinelli, Random incidence matrices: Moments of the spectral density, arXiv:cond-mat/0007127 [cond-mat.stat-mech], 2000-2001; J. Stat. Phys. 103, 301-307 (2001). See Sect. 5.6.
FORMULA
From Robert Israel, Nov 20 2017: (Start)
G.f.: 128*x*(-22*x^2+sqrt(-4*x+1)+2*x+1)/((1+sqrt(-4*x+1))^8*(-4*x+1)^(3/2)).
(220+88*n)*a(n)+(-3248-734*n)*a(n+1)+(7030+1150*n)*a(n+2)+(-5606-731*n)*a(n+3)+(2068+226*n)*a(n+4)+(-360-34*n)*a(n+5)+(24+2*n)*a(n+6) = 0. (End)
MAPLE
seq( (2*n+4)!*(n^2+11*n+2)/(2*(n-1)!*(n+6)!), n=1..30); # Robert Israel, Nov 20 2017
CROSSREFS
Sequence in context: A349296 A205493 A074886 * A036395 A271561 A215868
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 20 2017
STATUS
approved