|
|
A068921
|
|
Number of ways to tile a 2 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.
|
|
9
|
|
|
1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
D. Birmajer, J. B. Gil, M. D. Weiner, n the Enumeration of Restricted Words over a Finite Alphabet , J. Int. Seq. 19 (2016) # 16.1.3, Example 10
R. J. Mathar, Paving rectangular regions with rectangular tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 1.
Index entries for linear recurrences with constant coefficients, signature (1,0,1).
|
|
FORMULA
|
For n >= 3, a(n) = a(n-1) + a(n-3).
a(n) = A000930(n+1).
From Frank Ruskey, Jun 07 2009: (Start)
G.f.: (1+x^2)/(1-x-x^3).
a(n) = sum( binomial(n-2j+1,j), j=0..floor(n/2) ). (End)
G.f.: Q(0)*( 1+x^2 )/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 1}, {1, 1, 2}, 42] (* Robert G. Wilson v, Jul 12 2014 *)
|
|
PROG
|
(PARI) x='x+O('x^50); Vec((1+x^2)/(1-x-x^3)) \\ G. C. Greubel, Apr 26 2017
|
|
CROSSREFS
|
Cf. A068927 for incongruent tilings, A068920 for more info.
Cf. A000930, A078012, first column of A272471.
Sequence in context: A247083 A159848 A017826 * A000930 A078012 A135851
Adjacent sequences: A068918 A068919 A068920 * A068922 A068923 A068924
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Dean Hickerson, Mar 11 2002
|
|
STATUS
|
approved
|
|
|
|