login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068920 Table of t(r,s) by diagonals, where t(r,s) is the number of ways to tile an r X s room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point. 13
0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 4, 0, 4, 0, 1, 6, 4, 4, 6, 1, 0, 9, 0, 2, 0, 9, 0, 1, 13, 6, 3, 3, 6, 13, 1, 0, 19, 0, 3, 0, 3, 0, 19, 0, 1, 28, 10, 3, 2, 2, 3, 10, 28, 1, 0, 41, 0, 5, 0, 2, 0, 5, 0, 41, 0, 1, 60, 16, 5, 2, 2, 2, 2, 5, 16, 60, 1, 0, 88, 0, 6, 0, 1, 0, 1, 0, 6, 0, 88, 0, 1, 129, 26 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Table begins: t(1,1); t(1,2) t(2,1); t(1,3) t(2,2) t(3,1); ... Rows 2-6 are given in A068921 - A068925.

LINKS

Table of n, a(n) for n=1..94.

Dean Hickerson, Filling rectangular rooms with Tatami mats

MATHEMATICA

(* See link for Mathematica programs. *)

c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];

c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];

c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];

t[r_, s_] := Which[r>s, t[s, r], OddQ[r] && r>1, 2 c[r, s], True, c[r, s]];

A068920[n_] := Module[{x}, x = Floor[(Sqrt[8 n + 1] - 1)/2]; t[n + 1 - x (x + 1)/2, (x + 1) (x + 2)/2 - n]];

Table[A068920[n], {n, 0, 100}] (* Jean-Fran├žois Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)

CROSSREFS

Cf. A068926 for incongruent tilings, A067925 for count by area, A068921 for row 2, A068922 for row 3, A068923 for row 4, A068924 for row 5, A068925 for row 6.

Sequence in context: A291556 A323073 A167279 * A099390 A297477 A124031

Adjacent sequences:  A068917 A068918 A068919 * A068921 A068922 A068923

KEYWORD

nonn,tabl

AUTHOR

Dean Hickerson, Mar 11 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 13:18 EDT 2019. Contains 321345 sequences. (Running on oeis4.)