

A068920


Table of t(r,s) by diagonals, where t(r,s) is the number of ways to tile an r X s room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.


13



0, 1, 1, 0, 2, 0, 1, 3, 3, 1, 0, 4, 0, 4, 0, 1, 6, 4, 4, 6, 1, 0, 9, 0, 2, 0, 9, 0, 1, 13, 6, 3, 3, 6, 13, 1, 0, 19, 0, 3, 0, 3, 0, 19, 0, 1, 28, 10, 3, 2, 2, 3, 10, 28, 1, 0, 41, 0, 5, 0, 2, 0, 5, 0, 41, 0, 1, 60, 16, 5, 2, 2, 2, 2, 5, 16, 60, 1, 0, 88, 0, 6, 0, 1, 0, 1, 0, 6, 0, 88, 0, 1, 129, 26
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


COMMENTS

Table begins: t(1,1); t(1,2) t(2,1); t(1,3) t(2,2) t(3,1); ... Rows 26 are given in A068921  A068925.


LINKS

Table of n, a(n) for n=1..94.
Dean Hickerson, Filling rectangular rooms with Tatami mats


MATHEMATICA

See link for Mathematica programs.


CROSSREFS

Cf. A068926 for incongruent tilings, A067925 for count by area, A068921 for row 2, A068922 for row 3, A068923 for row 4, A068924 for row 5, A068925 for row 6.
Sequence in context: A166278 A103438 A167279 * A099390 A124031 A049600
Adjacent sequences: A068917 A068918 A068919 * A068921 A068922 A068923


KEYWORD

nonn,tabl


AUTHOR

Dean Hickerson (dean.hickerson(AT)yahoo.com), Mar 11 2002


STATUS

approved



