This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078012 Expansion of (1 - x) / (1 - x - x^3) in powers of x. 18
 1, 0, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Number of compositions of n into parts >= 3. - Milan Janjic, Jun 28 2010 From Adi Dani, May 22 2011: (Start) Number of compositions of number n into parts of the form 3*k+1, k >= 0. For example, a(10)=19 and all compositions of 10 in parts 1,4,7 or 10 are (1,1,1,1,1,1,1,1,1,1), (1,1,1,1,1,1,4), (1,1,1,1,1,4,1), (1,1,1,1,4,1,1), (1,1,1,4,1,1,1), (1,1,4,1,1,1,1), (1,4,1,1,1,1,1), (4,1,1,1,1,1,1), (1,1,4,4), (1,4,1,4), (1,4,4,1), (4,1,1,4),(4,1,4,1), (4,4,1,1), (1,1,1,7), (1,1,7,1), (1,7,1,1), (7,1,1,1), (10). (End) a(n+1) is for n >= 0 the number of 00's in the Narayana word NW(n); equivalently the number of two neighboring 0's at level n of the Narayana tree. See A257234. This implies that if a(0) is put to 0 then a(n) is the number of -1's in the Narayana word NW(n), and also at level n of the Narayana tree. - Wolfdieter Lang, Apr 24 2015 REFERENCES Taylor L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc., 1967, page 331ff. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Christian Ballot, On Functions Expressible as Words on a Pair of Beatty Sequences, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.2. C. K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. [Page 156, f_n.] Taras Goy, On identities with multinomial coefficients for Fibonacci-Narayana sequence, Annales Mathematicae et Informaticae, Vol. 49 (2018), 75-84. J. D. Opdyke, A unified approach to algorithms generating unrestricted.., J. Math. Model. Algor. 9 (2010) 53-97 Index entries for linear recurrences with constant coefficients, signature (1,0,1). FORMULA a(n) = Sum_{i=0..(n-3)/3} binomial(n-3-2*i, i), n >= 1, a(0) = 1. From Michael Somos, May 03 2011: (Start) Euler transform of A065417. G.f.: (1 - x) / (1 - x - x^3). a(n) = a(n-1) + a(n-3). a(-n) = A077961(n). a(n+3) = A000930(n). a(n+5) = A068921(n). (End) a(n+1) = A013979(n-3) + A135851(n) + A107458(n), n >= 3. a(n) = a(n-1) + a(n-3) for n >= 4. - Jaroslav Krizek, May 07 2011 G.f.: 1/(1 - Sum_{k>=3} x^k). - Joerg Arndt, Aug 13 2012 G.f.: Q(0)*(1-x)/2, where Q(k) = 1 + 1/(1 - x*(4*k+1 + x^2)/( x*(4*k+3 + x^2) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 08 2013 0 = -1 + a(n)*(a(n)*(a(n) + a(n+2)) + a(n+1)*(a(n+1) - 3*a(n+2))) + a(n+1)*(+a(n+1)*(+a(n+1) + a(n+2)) + a(n+2)*(-2*a(n+2))) + a(n+2)^3 for all n in Z. - Michael Somos, Feb 03 2018 EXAMPLE G.f. = 1 + x^3 + x^4 + x^5 + 2*x^6 + 3*x^7 + 4*x^8 + 6*x^9 + 9*x^10 + 13*x^11 + ... MAPLE A078012 := proc(n): if n=0 then 1 else add(binomial(n-3-2*i, i), i=0..(n-3)/3) fi: end: seq(A078012(n), n=0..46); # Johannes W. Meijer, Aug 11 2011 MATHEMATICA CoefficientList[ Series[(1 - x)/(1 - x - x^3), {x, 0, 46}], x] (* Robert G. Wilson v, May 25 2011 *) LinearRecurrence[{1, 0, 1}, {1, 0, 0}, 70] (* Vladimir Joseph Stephan Orlovsky, Feb 24 2012 *) a[ n_] := If[ n >= 0, SeriesCoefficient[ (1 - x) / (1 - x - x^3), {x, 0, n}], SeriesCoefficient [ 1 / (1 + x^2 - x^3), {x, 0, -n}]]; (* Michael Somos, Feb 03 2018 *) PROG (PARI) {a(n) = if( n<0, n = -n; polcoeff( 1 / (1 + x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - x) / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, May 03 2011 */ (Haskell) a078012 n = a078012_list !! n a078012_list = 1 : 0 : 0 : 1 : zipWith (+) a078012_list    (zipWith (+) (tail a078012_list) (drop 2 a078012_list)) -- Reinhard Zumkeller, Mar 23 2012 (MAGMA) I:=[1, 0, 0]; [n le 3 select I[n] else Self(n-1) + Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 19 2018 CROSSREFS Cf. A000930, A065417, A068921, A077961. Cf. A135851, A257234. Sequence in context: A017826 A068921 A000930 * A135851 A199804 A101913 Adjacent sequences:  A078009 A078010 A078011 * A078013 A078014 A078015 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 17 2002, Mar 08 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 26 04:32 EDT 2019. Contains 321481 sequences. (Running on oeis4.)