login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135851 If n <= 1 then n-1 otherwise A107458(n-1) + A107458(n-2). 5
-1, 0, 1, 0, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

REFERENCES

C. K. Fan, Structure of a Hecke algebra quotient. J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. [Page 156, f^1_n.]

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,1).

FORMULA

a(n)= +a(n-1) +a(n-3). a(n) = A078012(n-2), n>=2. G.f.: ( 1-x^2-x ) / ( -1+x+x^3 ). [From R. J. Mathar, Jul 26 2010]

a(n) = A077961(2-n) for all n in Z. a(n)^2 - a(n-1)*a(n+1) = A077961(n-5). - Michael Somos, Jan 08 2014

EXAMPLE

G.f. = -1 + x^2 + x^5 + x^6 + x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + ...

MATHEMATICA

LinearRecurrence[{1, 0, 1}, {-1, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)

a[ n_] := If[ n < 3, SeriesCoefficient[ 1 / (1 + x^2 - x^3), {x, 0, 2 - n}], SeriesCoefficient[ x^5 / (1 - x - x^3), {x, 0, n}]]; (* Michael Somos, Jan 08 2014 *)

PROG

(Haskell)

a135851 n = a135851_list !! n

a135851_list = -1 : 0 : 1 : zipWith (+) a135851_list (drop 2 a135851_list)

-- Reinhard Zumkeller, Mar 23 2012

(PARI) {a(n) = if( n<3, polcoeff( 1 / (1 + x^2 - x^3) + x * O(x^(2-n)), 2-n), polcoeff( x^5 / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Jan 08 2014 */

CROSSREFS

Cf. A013979, A077961, A078012, A107458.

Sequence in context: A068921 A000930 A078012 * A199804 A101913 A121653

Adjacent sequences:  A135848 A135849 A135850 * A135852 A135853 A135854

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Mar 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 12:10 EDT 2019. Contains 321283 sequences. (Running on oeis4.)