login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135851 a(n) = n-1, if n <= 2, otherwise A107458(n-1) + A107458(n-2). 10
-1, 0, 1, 0, 0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189, 277, 406, 595, 872, 1278, 1873, 2745, 4023, 5896, 8641, 12664, 18560, 27201, 39865, 58425, 85626, 125491, 183916, 269542, 395033, 578949, 848491, 1243524, 1822473, 2670964, 3914488, 5736961, 8407925 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

C. K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc. 10 (1997), no. 1, 139-167. [Page 156, f_n.]

Index entries for linear recurrences with constant coefficients, signature (1,0,1).

FORMULA

From R. J. Mathar, Jul 26 2010: (Start)

a(n) = +a(n-1) +a(n-3).

a(n) = A078012(n-2), for n>=2.

G.f.: (-1 + x + x^2) / (1 - x - x^3). (End)

From Michael Somos, Jan 08 2014: (Start)

a(n) = A077961(2-n) for all n in Z.

a(n)^2 - a(n-1)*a(n+1) = A077961(n-5). (End)

a(n) = A000930(n+2) - 2*A000930(n). - G. C. Greubel, Aug 01 2022

EXAMPLE

G.f. = -1 + x^2 + x^5 + x^6 + x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + ...

MATHEMATICA

LinearRecurrence[{1, 0, 1}, {-1, 0, 1}, 50] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)

a[ n_] := If[ n < 3, SeriesCoefficient[ 1 / (1 + x^2 - x^3), {x, 0, 2 - n}], SeriesCoefficient[ x^5 / (1 - x - x^3), {x, 0, n}]]; (* Michael Somos, Jan 08 2014 *)

PROG

(Haskell)

a135851 n = a135851_list !! n

a135851_list = -1 : 0 : 1 : zipWith (+) a135851_list (drop 2 a135851_list)

-- Reinhard Zumkeller, Mar 23 2012

(PARI) {a(n) = if( n<3, polcoeff( 1 / (1 + x^2 - x^3) + x * O(x^(2-n)), 2-n), polcoeff( x^5 / (1 - x - x^3) + x * O(x^n), n))}; /* Michael Somos, Jan 08 2014 */

(Magma) [n le 3 select n-2 else Self(n-1) + Self(n-3): n in [1..61]]; // G. C. Greubel, Aug 01 2022

(SageMath)

def A000930(n): return sum(binomial(n-2*j, j) for j in (0..(n//3)))

def A135851(n): return A000930(n+2) -2*A000930(n)

[A135851(n) for n in (0..60)] # G. C. Greubel, Aug 01 2022

CROSSREFS

Cf. A000930, A013979, A077961, A078012, A107458.

Sequence in context: A068921 A000930 A078012 * A199804 A101913 A352042

Adjacent sequences: A135848 A135849 A135850 * A135852 A135853 A135854

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Mar 08 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 10:31 EST 2022. Contains 358424 sequences. (Running on oeis4.)