login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,0,1,0,1,1,0,2,2,1
Displaying 1-10 of 47 results found. page 1 2 3 4 5
     Sort: relevance | references | number | modified | created      Format: long | short | data
A084938 Triangle read by rows: T(n,k) = Sum_{j>=0} j!*T(n-j-1, k-1) for n >= 0, k >= 0. +30
638
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 6, 5, 3, 1, 0, 24, 16, 9, 4, 1, 0, 120, 64, 31, 14, 5, 1, 0, 720, 312, 126, 52, 20, 6, 1, 0, 5040, 1812, 606, 217, 80, 27, 7, 1, 0, 40320, 12288, 3428, 1040, 345, 116, 35, 8, 1, 0, 362880, 95616, 22572, 5768, 1661, 519, 161, 44, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Triangle T(n,k) is [0,1,1,2,2,3,3,4,4,...] DELTA [1,0,0,0,0,0,...] = A110654 DELTA A000007.
In general, the triangle [r_0,r_1,r_2,r_3,...] DELTA [s_0,s_1,s_2,s_3,...] has generating function 1/(1-(r_0*x+s_0*x*y)/(1-(r_1*x+s_1*x*y)/(1-(r_2*x+s_2*x*y)/(1-(r_3*x+s_3*x*y)/(1-...(continued fraction). See also the Formula section below.
T(n,k) = number of permutations on [n] that (i) contain a 132 pattern only as part of a 4132 pattern and (ii) start with n+1-k. For example, for n >= 1, T(n,1) = (n-1)! counts all (n-1)! permutations on [n] that start with n: either they avoid 132 altogether or the initial entry serves as the "4" in a 4132 pattern and T(4,3) = 3 counts 2134, 2314, 2341. - David Callan, Jul 20 2005
T(n,k) is the number of permutations on [n] that (i) contain a (scattered) 342 pattern only as part of a 1342 pattern and (ii) contain 1 in position k. For example, T(4,3) counts 3214, 4213, 4312. (It does not count, say, 2314 because 231 forms an offending 342 pattern.) - David Callan, Jul 20 2005
Riordan array (1,x*g(x)) where g(x) is the g.f. of the factorials (n!). - Paul Barry, Sep 25 2008
Modulo 2, this sequence becomes A106344.
T(n,k) is the number of permutations of {1,2,...,n} having k cycles such that the elements of each cycle of the permutation form an interval. - Ran Pan, Nov 11 2016
The convolution triangle of the factorial numbers. - Peter Luschny, Oct 09 2022
LINKS
Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009), Article 09.7.6.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
David Callan, A combinatorial interpretation of the eigensequence for composition, arXiv:math/0507169 [math.CO], 2005.
David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.
H. Fuks and J. M. G. Soto, Exponential convergence to equilibrium in cellular automata asymptotically emulating identity, arXiv preprint arXiv:1306.1189 [nlin.CG], 2013.
Sergey Kitaev and Philip B. Zhang, Distributions of mesh patterns of short lengths, arXiv:1811.07679 [math.CO], 2018.
FORMULA
The operator DELTA takes two sequences r = (r_0, r_1, ...), s = (s_0, s_1, ...) and produces a triangle T(n, k), 0 <= k <= n, as follows:
Let q(k) = x*r_k + y*s_k for k >= 0; let P(n, k) (n >= 0, k >= -1) be defined recursively by P(0, k) = 1 for k >= 0; P(n, -1) = 0 for n >= 1; P(n, k) = P(n, k-1) + q(k)*P(n-1, k+1) for n >= 1, k >= 0. Then P(n, k) is a homogeneous polynomial in x and y of degree n and T(n, k) = coefficient of x^(n-k)*y^k in P(n, 0).
T(n, n) = 1.
T(k+1, k) = A001477(k).
T(k+2, k) = A000096(k).
T(n+1, 1) = A000142(n).
T(n+2, 2) = A003149(n).
T(n+3, 3) = A090595(n).
T(n+4, 4) = A090319(n).
T(m+n, m) = Sum_{k=0..n} A090238(n, k)*binomial(m, k).
G.f. for column k: Sum_{n>=0} T(k+n, k)*x^n = (Sum_{n>=0} n!*x^n )^k.
For k>0, T(n+k, k) = Sum_{a_1 + a_2 + .. + a_k = n} (a_1)!*(a_2)!*..*(a_k)!; a_i>=0, n>=0.
T(n,k) = Sum_{j>=0} A075834(j)*T(n-1,k+j-1).
T(2n,n) = A287899(n). - Alois P. Heinz, Jun 02 2017
From G. C. Greubel, Nov 10 2022: (Start)
Sum_{k=0..n} T(n, k) = A051295(n).
Sum_{k=0..n} (-1)^k*T(n, k) = [n=0] - A052186(n-1)*[n>0]. (End)
EXAMPLE
From Paul Barry, Sep 25 2008: (Start)
Triangle [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,0,0,0,...] begins
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 6, 5, 3, 1;
0, 24, 16, 9, 4, 1;
0, 120, 64, 31, 14, 5, 1;
0, 720, 312, 126, 52, 20, 6, 1;
0, 5040, 1812, 606, 217, 80, 27, 7, 1;
0, 40320, 12288, 3428, 1040, 345, 116, 35, 8, 1;
0, 362880, 95616, 22572, 5768, 1661, 519, 161, 44, 9, 1. (End)
From Paul Barry, May 14 2009: (Start)
The production matrix is
0, 1;
0, 1, 1;
0, 1, 1, 1;
0, 2, 1, 1, 1;
0, 7, 2, 1, 1, 1;
0, 34, 7, 2, 1, 1, 1;
0, 206, 34, 7, 2, 1, 1, 1;
which is based on A075834. (End)
MAPLE
DELTA := proc(r, s, n) local T, x, y, q, P, i, j, k, t1; T := array(0..n, 0..n);
for i from 0 to n do q[i] := x*r[i+1]+y*s[i+1]; od: for k from 0 to n do P[0, k] := 1; od: for i from 0 to n do P[i, -1] := 0; od:
for i from 1 to n do for k from 0 to n do P[i, k] := sort(expand(P[i, k-1] + q[k]*P[i-1, k+1])); od: od:
for i from 0 to n do t1 := P[i, 0]; for j from 0 to i do T[i, j] := coeff(coeff(t1, x, i-j), y, j); od: lprint( seq(T[i, j], j=0..i) ); od: end;
# To produce the current triangle: s3 := n->floor((n+1)/2); s4 := n->if n = 0 then 1 else 0; fi; r := [seq(s3(i), i= 0..40)]; s := [seq(s4(i), i=0..40)]; DELTA(r, s, 20);
# Uses function PMatrix from A357368.
PMatrix(10, n -> factorial(n - 1)); # Peter Luschny, Oct 09 2022
MATHEMATICA
a[0, 0] = 1; a[n_, k_] := a[n, k] = Sum[j! a[n - j - 1, k - 1], {j, 0, n - 1}]; Flatten[Table[a[i, j], {i, 0, 10}, {j, 0, i}]] (* T. D. Noe, Feb 22 2012 *)
DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x*r[[k+1]] + y*s[[k+1]]; p[0, _] = 1; p[_, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k]*p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]]; DELTA[Floor[Range[10]/2], Prepend[Table[0, {10}], 1], 10] (* Jean-François Alcover, Sep 12 2013, after Philippe Deléham *)
PROG
(Sage)
def delehamdelta(R, S) :
L = min(len(R), len(S)) + 1
ring = PolynomialRing(ZZ, 'x')
x = ring.gen()
A = [Rk + x*Sk for Rk, Sk in zip(R, S)]
C = [ring(0)] + [ring(1) for i in range(L)]
for k in (1..L) :
for n in range(k-1, 0, -1) :
C[n] = C[n-1] + C[n+1]*A[n-1]
yield list(C[1])
def A084938_triangle(n) :
for row in delehamdelta([(i+1)//2 for i in (0..n)], [0^i for i in (0..n)]):
print(row)
A084938_triangle(10) # Peter Luschny, Jan 28 2012
(Magma)
function T(n, k) // T = A084938
if k lt 0 or k gt n then return 0;
elif n eq 0 or k eq n then return 1;
elif k eq 0 then return 0;
else return (&+[Factorial(j)*T(n-j-1, k-1): j in [0..n-1]]);
end if; return T;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 10 2022
CROSSREFS
Cf. A003149, A051295 (row sums), A052186, A090238,
Cf. A287899.
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jul 16 2003; corrections Dec 17 2008, Dec 20 2008, Feb 05 2009
EXTENSIONS
Name edited by Derek Orr, May 01 2015
STATUS
approved
A106566 Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938. +30
59
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Catalan convolution triangle; g.f. for column k: (x*c(x))^k with c(x) g.f. for A000108 (Catalan numbers).
Riordan array (1, xc(x)), where c(x) the g.f. of A000108; inverse of Riordan array (1, x*(1-x)) (see A109466).
Diagonal sums give A132364. - Philippe Deléham, Nov 11 2007
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
L. W. Shapiro, S. Getu, W.-J. Woan and L. C. Woodson, The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
FORMULA
T(n, k) = binomial(2n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0.
T(0, 0) = 1; T(n, 0) = 0 if n > 0; T(0, k) = 0 if k > 0; for k > 0 and n > 0: T(n, k) = Sum_{j>=0} T(n-1, k-1+j).
Sum_{j>=0} T(n+j, 2j) = binomial(2n-1, n), n > 0.
Sum_{j>=0} T(n+j, 2j+1) = binomial(2n-2, n-1), n > 0.
Sum_{k>=0} (-1)^(n+k)*T(n, k) = A064310(n). T(n, k) = (-1)^(n+k)*A099039(n, k).
Sum_k=0..n} T(n, k)*x^k = A000007(n), A000108(n), A000984(n), A007854(n), A076035(n), A076036(n), A127628(n), A126694(n), A115970(n) for x = 0,1,2,3,4,5,6,7,8 respectively.
Sum_{k>=0} T(n, k)*x^(n-k) = C(x, n); C(x, n) are the generalized Catalan numbers.
Sum_{j=0..n-k} T(n+k,2*k+j) = A039599(n,k).
Sum_{j>=0} T(n,j)*binomial(j,k) = A039599(n,k).
Sum_{k=0..n} T(n,k)*A000108(k) = A127632(n).
Sum_{k=0..n} T(n,k)*(x+1)^k*x^(n-k) = A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x= 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Aug 25 2007
Sum_{k=0..n} T(n,k)*A000108(k-1) = A121988(n), with A000108(-1)=0. - Philippe Deléham, Aug 27 2007
Sum_{k=0..n} T(n,k)*(-x)^k = A000007(n), A126983(n), A126984(n), A126982(n), A126986(n), A126987(n), A127017(n), A127016(n), A126985(n), A127053(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 27 2007
T(n,k)*2^(n-k) = A110510(n,k); T(n,k)*3^(n-k) = A110518(n,k). - Philippe Deléham, Nov 11 2007
Sum_{k=0..n} T(n,k)*A000045(k) = A109262(n), A000045: Fibonacci numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A000129(k) = A143464(n), A000129: Pell numbers. - Philippe Deléham, Oct 28 2008
Sum_{k=0..n} T(n,k)*A100335(k) = A002450(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A100334(k) = A001906(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A099322(k) = A015565(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A106233(k) = A003462(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A151821(k+1) = A100320(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A082505(k+1) = A144706(n). - Philippe Deléham, Oct 30 2008
Sum_{k=0..n} T(n,k)*A000045(2k+2) = A026671(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A122367(k) = A026726(n). - Philippe Deléham, Feb 11 2009
Sum_{k=0..n} T(n,k)*A008619(k) = A000958(n+1). - Philippe Deléham, Nov 15 2009
Sum_{k=0..n} T(n,k)*A027941(k+1) = A026674(n+1). - Philippe Deléham, Feb 01 2014
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - x*z*c(z)) where c(z) the g.f. of A000108. - Michael Somos, Oct 01 2022
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 5, 3, 1;
0, 14, 14, 9, 4, 1;
0, 42, 42, 28, 14, 5, 1;
0, 132, 132, 90, 48, 20, 6, 1;
From Paul Barry, Sep 28 2009: (Start)
Production array is
0, 1,
0, 1, 1,
0, 1, 1, 1,
0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
MAPLE
A106566 := proc(n, k)
if n = 0 then
1;
elif k < 0 or k > n then
0;
else
binomial(2*n-k-1, n-k)*k/n ;
end if;
end proc: # R. J. Mathar, Mar 01 2015
MATHEMATICA
T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
PROG
(Magma)
A106566:= func< n, k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
[A106566(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
(Sage)
def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
flatten([[A106566(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
(PARI) {T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
CROSSREFS
The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
See also A009766, A033184, A059365 for other versions.
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, May 30 2005
EXTENSIONS
Formula corrected by Philippe Deléham, Oct 31 2008
Corrected by Philippe Deléham, Sep 17 2009
Corrected by Alois P. Heinz, Aug 02 2012
STATUS
approved
A258829 Number T(n,k) of permutations p of [n] such that the up-down signature of 0,p has nonnegative partial sums with a maximal value of k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. +30
19
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 11, 3, 1, 0, 16, 38, 28, 4, 1, 0, 61, 263, 130, 62, 5, 1, 0, 272, 1260, 1263, 340, 129, 6, 1, 0, 1385, 10871, 8090, 4734, 819, 261, 7, 1, 0, 7936, 66576, 88101, 33855, 16066, 1890, 522, 8, 1, 0, 50521, 694599, 724189, 495371, 127538, 52022, 4260, 1040, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
FORMULA
T(n,k) = A262163(n,k) - A262163(n,k-1) for k>0, T(n,0) = A262163(n,0).
EXAMPLE
p = 1432 is counted by T(4,2) because the up-down signature of 0,p = 01432 is 1,1,-1,-1 with partial sums 1,2,1,0.
q = 4321 is not counted by any T(4,k) because the up-down signature of 0,q = 04321 is 1,-1,-1,-1 with partial sums 1,0,-1,-2.
T(4,1) = 5: 2143, 3142, 3241, 4132, 4231.
T(4,2) = 11: 1324, 1423, 1432, 2134, 2314, 2413, 2431, 3124, 3412, 3421, 4123.
T(4,3) = 3: 1243, 1342, 2341.
T(4,4) = 1: 1234.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 11, 3, 1;
0, 16, 38, 28, 4, 1;
0, 61, 263, 130, 62, 5, 1;
0, 272, 1260, 1263, 340, 129, 6, 1;
0, 1385, 10871, 8090, 4734, 819, 261, 7, 1;
MAPLE
b:= proc(u, o, c, k) option remember;
`if`(c<0 or c>k, 0, `if`(u+o=0, 1,
add(b(u-j, o-1+j, c+1, k), j=1..u)+
add(b(u+j-1, o-j, c-1, k), j=1..o)))
end:
A:= (n, k)-> b(n, 0$2, k):
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[u_, o_, c_, k_] := b[u, o, c, k] = If[c < 0 || c > k, 0, If[u + o == 0, 1, Sum[b[u - j, o - 1 + j, c + 1, k], {j, 1, u}] + Sum[b[u + j - 1, o - j, c - 1, k], {j, 1, o}]]];
A[n_, k_] := b[n, 0, 0, k];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, Jun 09 2018, after Alois P. Heinz *)
CROSSREFS
Row sums give A258830.
T(2n,n) gives A266947.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jun 11 2015
STATUS
approved
A189233 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals upwards, where the e.g.f. of column k is exp(k*(e^x-1)). +30
16
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 6, 3, 1, 0, 15, 22, 12, 4, 1, 0, 52, 94, 57, 20, 5, 1, 0, 203, 454, 309, 116, 30, 6, 1, 0, 877, 2430, 1866, 756, 205, 42, 7, 1, 0, 4140, 14214, 12351, 5428, 1555, 330, 56, 8, 1, 0, 21147, 89918, 88563, 42356, 12880, 2850, 497, 72, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
A(n,k) is the n-th moment of a Poisson distribution with mean = k. - Geoffrey Critzer, Dec 23 2018
LINKS
E. T. Bell, Exponential numbers, Amer. Math. Monthly, 41 (1934), 411-419.
FORMULA
E.g.f. of column k: exp(k*(e^x-1)).
A(n,1) = A000110(n), A(n, -1) = A000587(n).
A(n,k) = BellPolynomial(n, k). - Geoffrey Critzer, Dec 23 2018
A(n,k) = Sum_{i=0..n} Stirling2(n,i)*k^i. - Vladimir Kruchinin, Apr 12 2019
EXAMPLE
Square array begins:
A000012 1, 1, 1, 1, 1, 1, 1, 1, ...
A001477 0, 1, 2, 3, 4, 5, 6, 7, ...
A002378 0, 2, 6, 12, 20, 30, 42, 56, ...
A033445 0, 5, 22, 57, 116, 205, 330, 497, ...
0, 15, 94, 309, 756, 1555, 2850, 4809, ...
0, 52, 454, 1866, 5428, 12880, 26682, 50134, ...
MAPLE
# Cf. also the Maple prog. of Alois P. Heinz in A144223 and A144180.
expnums := proc(k, n) option remember; local j;
`if`(n = 0, 1, (1+add(binomial(n-1, j-1)*expnums(k, n-j), j = 1..n-1))*k) end:
A189233_array := (k, n) -> expnums(k, n):
seq(print(seq(A189233_array(k, n), k = 0..7)), n = 0..5);
A189233_egf := k -> exp(k*(exp(x)-1));
T := (n, k) -> n!*coeff(series(A189233_egf(k), x, n+1), x, n):
seq(lprint(seq(T(n, k), k = 0..7)), n = 0..5):
# alternative Maple program:
A:= proc(n, k) option remember; `if`(n=0, 1,
(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
seq(seq(A(d-k, k), k=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
MATHEMATICA
max = 9; Clear[col]; col[k_] := col[k] = CoefficientList[ Series[ Exp[k*(Exp[x]-1)], {x, 0, max}], x]*Range[0, max]!; a[0, _] = 1; a[n_?Positive, 0] = 0; a[n_, k_] := col[k][[n+1]]; Table[ a[n-k, k], {n, 0, max}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
Table[Table[BellB[n, k], {k, 0, 5}], {n, 0, 5}] // Grid (* Geoffrey Critzer, Dec 23 2018 *)
PROG
(Maxima)
A(n, k):=if k=0 and n=0 then 1 else if k=0 then 0 else sum(stirling2(n, i)*k^i, i, 0, n); /* Vladimir Kruchinin, Apr 12 2019 */
CROSSREFS
Main diagonal gives A242817.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 18 2011
STATUS
approved
A155161 A Fibonacci convolution triangle: Riordan array (1, x/(1 - x - x^2)). Triangle T(n,k), 0 <= k <= n, read by rows. +30
15
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 3, 1, 0, 5, 10, 9, 4, 1, 0, 8, 20, 22, 14, 5, 1, 0, 13, 38, 51, 40, 20, 6, 1, 0, 21, 71, 111, 105, 65, 27, 7, 1, 0, 34, 130, 233, 256, 190, 98, 35, 8, 1, 0, 55, 235, 474, 594, 511, 315, 140, 44, 9, 1, 0, 89, 420, 942, 1324, 1295, 924, 490, 192, 54, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
FORMULA
T(n, k) given by [0,1,1,-1,0,0,0,...] DELTA [1,0,0,0,...] where DELTA is the operator defined in A084938.
a(n,k) = Sum_{i=0..n-k} M(k,i)*binomial(i,n-i-k), where M(n,k) = n(n+1)(n+2)...(n+k-1)/k!. - Emanuele Munarini, Mar 15 2011
Recurrence: a(n+2,k+1) = a(n+1,k+1) + a(n+1,k) + a(n,k+1). - Emanuele Munarini, Mar 15 2011
G.f.: (1-x-x^2)/(1-x-x^2-x*y). - Philippe Deléham, Feb 08 2012
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n) (n > 0), A052991(n), A155179(n), A155181(n), A155195(n), A155196(n), A155197(n), A155198(n), A155199(n) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Feb 08 2012
T(n, k) = binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4). - Peter Luschny, May 23 2021
EXAMPLE
Triangle begins:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 2, 1;
[4] 0, 3, 5, 3, 1;
[5] 0, 5, 10, 9, 4, 1;
[6] 0, 8, 20, 22, 14, 5, 1;
[7] 0, 13, 38, 51, 40, 20, 6, 1;
[8] 0, 21, 71, 111, 105, 65, 27, 7, 1;
[9] 0, 34, 130, 233, 256, 190, 98, 35, 8, 1.
MAPLE
T := (n, k) -> binomial(n-1, k-1)*hypergeom([-(n-k)/2, -(n-k-1)/2], [1-n], -4):
seq(seq(simplify(T(n, k)), k = 0..n), n = 0..11); # Peter Luschny, May 23 2021
# Uses function PMatrix from A357368.
PMatrix(10, n -> combinat:-fibonacci(n)); # Peter Luschny, Oct 07 2022
MATHEMATICA
CoefficientList[#, y]& /@ CoefficientList[(1-x-x^2)/(1-x-x^2-x*y)+O[x]^12, x] // Flatten (* Jean-François Alcover, Mar 01 2019 *)
(* Generates the triangle without the leading '1' (rows are rearranged). *)
(* Function RiordanSquare defined in A321620. *)
RiordanSquare[x/(1 - x - x^2), 11] // Flatten (* Peter Luschny, Feb 27 2021 *)
PROG
(Maxima) M(n, k):=pochhammer(n, k)/k!;
create_list(sum(M(k, i)*binomial(i, n-i-k), i, 0, n-k), n, 0, 8, k, 0, n); /* Emanuele Munarini, Mar 15 2011 */
(Haskell)
a155161 n k = a155161_tabl !! n !! k
a155161_row n = a155161_tabl !! n
a155161_tabl = [1] : [0, 1] : f [0] [0, 1] where
f us vs = ws : f vs ws where
ws = zipWith (+) (us ++ [0, 0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
-- Reinhard Zumkeller, Apr 17 2013
CROSSREFS
Row sums are in A215928.
Central terms: T(2*n,n) = A213684(n) for n > 0.
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jan 21 2009
STATUS
approved
A276543 Triangle read by rows: T(n,k) = number of primitive (period n) n-bead bracelet structures using exactly k different colored beads. +30
15
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 13, 11, 3, 1, 0, 8, 31, 33, 16, 3, 1, 0, 14, 80, 136, 85, 27, 4, 1, 0, 21, 201, 478, 434, 171, 37, 4, 1, 0, 39, 533, 1849, 2270, 1249, 338, 54, 5, 1, 0, 62, 1401, 6845, 11530, 8389, 3056, 590, 70, 5, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
Turning over will not create a new bracelet. Permuting the colors of the beads will not change the structure.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
T(n, k) = Sum_{d|n} mu(n/d) * A152176(d, k).
EXAMPLE
Triangle starts:
1
0 1
0 1 1
0 2 2 1
0 3 5 2 1
0 5 13 11 3 1
0 8 31 33 16 3 1
0 14 80 136 85 27 4 1
0 21 201 478 434 171 37 4 1
0 39 533 1849 2270 1249 338 54 5 1
...
PROG
(PARI) \\ Ach is A304972 and R is A152175 as square matrices.
Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n)={my(M=(R(n)+Ach(n))/2); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*M[n/d, ])))}
{ my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019
CROSSREFS
Partial row sums include A000046, A056362, A056363, A056364, A056365.
Row sums are A276548.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Apr 09 2017
STATUS
approved
A308680 Number T(n,k) of colored integer partitions of n such that all colors from a k-set are used and parts differ by size or by color; triangle T(n,k), n>=0, 0<=k<=n, read by rows. +30
15
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 3, 8, 9, 4, 1, 0, 4, 14, 19, 14, 5, 1, 0, 5, 22, 39, 36, 20, 6, 1, 0, 6, 34, 72, 85, 60, 27, 7, 1, 0, 8, 50, 128, 180, 160, 92, 35, 8, 1, 0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1, 0, 12, 104, 354, 680, 845, 720, 434, 184, 54, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
For fixed k > 0, T(n,k) ~ exp(Pi*sqrt(k*n/3)) * k^(1/4) / (3^(1/4) * 2^((k+3)/2) * n^(3/4)). - Vaclav Kotesovec, Sep 16 2019
T is the convolution triangle of A000009 (see A357368). - Peter Luschny, Oct 19 2022
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * binomial(k,i) * A286335(n,k-i).
Sum_{k=1..n} k * T(n,k) = A325915(n).
G.f. of column k: (-1 + Product_{j>=1} (1 + x^j))^k. - Alois P. Heinz, Jan 29 2021
EXAMPLE
T(4,1) = 2: 3a1a, 4a.
T(4,2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
T(4,3) = 3: 2a1b1c, 2b1a1c, 2c1a1b.
T(4,4) = 1: 1a1b1c1d.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 2, 5, 3, 1;
0, 3, 8, 9, 4, 1;
0, 4, 14, 19, 14, 5, 1;
0, 5, 22, 39, 36, 20, 6, 1;
0, 6, 34, 72, 85, 60, 27, 7, 1;
0, 8, 50, 128, 180, 160, 92, 35, 8, 1;
0, 10, 73, 216, 360, 381, 273, 133, 44, 9, 1;
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
T:= proc(n, k) option remember;
`if`(k=0, `if`(n=0, 1, 0), `if`(k=1, `if`(n=0, 0, b(n)),
(q-> add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Jan 31 2021
# Uses function PMatrix from A357368.
PMatrix(10, A000009); # Peter Luschny, Oct 19 2022
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k]*Binomial[k, j]][n - i*j], {j, 0, Min[k, n/i]}]]];
T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A000009 (for n>0), A327380, A327381, A327382, A327383, A327384, A327385, A327386, A327387, A327388.
Main diagonal and lower diagonals give: A000012, A001477, A000096.
Row sums give A304969.
T(2n,n) gives A324595.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 29 2019
STATUS
approved
A107424 Triangle read by rows: T(n, k) is the number of primitive (period n) n-bead necklace structures with k different colors. Only includes structures that contain all k colors. +30
12
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 5, 2, 1, 0, 5, 17, 13, 3, 1, 0, 9, 43, 50, 20, 3, 1, 0, 16, 124, 220, 136, 36, 4, 1, 0, 28, 338, 866, 773, 296, 52, 4, 1, 0, 51, 941, 3435, 4280, 2303, 596, 78, 5, 1, 0, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 0, 170, 7234, 51061 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,8
COMMENTS
This classification is concerned with which beads are the same color, not with the colors themselves, so bbabcd is the same structure as aabacd. Cyclic permutations are also the same structure, e.g. abacda is also the same structure. However, order matters: the reverse of aabacd is equivalent to aabcad, which is also on the list.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
FORMULA
T(n, k) = Sum_{d|n} mu(n/d) * A152175(d, k). - Andrew Howroyd, Apr 09 2017
EXAMPLE
T(6, 4) = 13: {aaabcd, aabacd, aabcad, abacad, aabbcd, aabcbd, aabcdb, aacbbd, aacbdb, ababcd, abacbd, acabdb, abcabd}.
From Andrew Howroyd, Apr 09 2017 (Start)
Triangle starts:
1
0 1
0 1 1
0 2 2 1
0 3 5 2 1
0 5 17 13 3 1
0 9 43 50 20 3 1
0 16 124 220 136 36 4 1
0 28 338 866 773 296 52 4 1
0 51 941 3435 4280 2303 596 78 5 1
(End)
MATHEMATICA
A[d_, n_] := A[d, n] = Which[n == 0, 1, n == 1, DivisorSum[d, x^# &], d == 1, Sum[StirlingS2[n, k] x^k, {k, 0, n}], True, Expand[A[d, 1] A[d, n-1] + D[A[d, n-1], x] x]];
B[n_, k_] := Coefficient[DivisorSum[n, EulerPhi[#] A[#, n/#]&]/n/x, x, k];
T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] B[#, k]&];
Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 06 2018, after Andrew Howroyd and Robert A. Russell *)
PROG
(PARI) \\ here R(n) is A152175 as square matrix.
R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
T(n) = {my(M=R(n)); matrix(n, n, i, k, sumdiv(i, d, moebius(i/d)*M[d, k]))}
{ my(A=T(10)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Jan 09 2020
CROSSREFS
Columns 2-6 are A056303, A056304, A056305, A056306, A056307.
Partial row sums include A000048, A002075, A056300, A056301, A056302.
Row sums are A276547.
KEYWORD
nonn,tabl
AUTHOR
David Wasserman, May 26 2005
STATUS
approved
A292086 Number T(n,k) of (unlabeled) rooted trees with n leaf nodes and without unary nodes such that k is the maximum of 1 and the node outdegrees; triangle T(n,k), n>=1, 1<=k<=n, read by rows. +30
12
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 3, 6, 2, 1, 0, 6, 17, 7, 2, 1, 0, 11, 47, 22, 7, 2, 1, 0, 23, 133, 72, 23, 7, 2, 1, 0, 46, 380, 230, 77, 23, 7, 2, 1, 0, 98, 1096, 751, 256, 78, 23, 7, 2, 1, 0, 207, 3186, 2442, 861, 261, 78, 23, 7, 2, 1, 0, 451, 9351, 8006, 2897, 887, 262, 78, 23, 7, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,8
LINKS
FORMULA
T(n,k) = A292085(n,k) - A292085(n,k-1) for k>2, T(n,1) = A292085(n,1).
EXAMPLE
: T(4,2) = 2 : T(4,3) = 2 : T(4,4) = 1 :
: : : :
: o o : o o : o :
: / \ / \ : / \ /|\ : /( )\ :
: o N o o : o N o N N : N N N N :
: / \ ( ) ( ) : /|\ ( ) : :
: o N N N N N : N N N N N : :
: ( ) : : :
: N N : : :
: : : :
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 3, 6, 2, 1;
0, 6, 17, 7, 2, 1;
0, 11, 47, 22, 7, 2, 1;
0, 23, 133, 72, 23, 7, 2, 1;
0, 46, 380, 230, 77, 23, 7, 2, 1;
...
MAPLE
b:= proc(n, i, v, k) option remember; `if`(n=0,
`if`(v=0, 1, 0), `if`(i<1 or v<1 or n<v, 0,
`if`(v=n, 1, add(binomial(A(i, k)+j-1, j)*
b(n-i*j, i-1, v-j, k), j=0..min(n/i, v)))))
end:
A:= proc(n, k) option remember; `if`(n<2, n,
add(b(n, n+1-j, j, k), j=2..min(n, k)))
end:
T:= (n, k)-> A(n, k)-`if`(k=1, 0, A(n, k-1)):
seq(seq(T(n, k), k=1..n), n=1..15);
MATHEMATICA
b[n_, i_, v_, k_] := b[n, i, v, k] = If[n == 0, If[v == 0, 1, 0], If[i < 1 || v < 1 || n < v, 0, If[v == n, 1, Sum[Binomial[A[i, k] + j - 1, j]*b[n - i*j, i - 1, v - j, k], {j, 0, Min[n/i, v]}]]]];
A[n_, k_] := A[n, k] = If[n < 2, n, Sum[b[n, n + 1 - j, j, k], {j, 2, Min[n, k]}]];
T[n_, k_] := A[n, k] - If[k == 1, 0, A[n, k - 1]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
CROSSREFS
Columns k=1-10 give: A063524, A001190 (for n>1), A292229, A292230, A292231, A292232, A292233, A292234, A292235, A292236.
Row sums give A000669.
Limit of reversed rows gives A292087.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 08 2017
STATUS
approved
A093729 Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k) in the tree of tournament sequences. +30
10
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 7, 7, 3, 1, 0, 41, 41, 15, 4, 1, 0, 397, 397, 123, 26, 5, 1, 0, 6377, 6377, 1656, 274, 40, 6, 1, 0, 171886, 171886, 36987, 4721, 515, 57, 7, 1, 0, 7892642, 7892642, 1391106, 134899, 10810, 867, 77, 8, 1, 0, 627340987, 627340987, 89574978, 6501536, 376175, 21456, 1351, 100, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Column 1, of array T and antidiagonals, equals A008934, which is the number of tournament sequences.
A tournament sequence is an increasing sequence of positive integers (t_1,t_2,...) such that t_1 = 1 and t_{i+1} <= 2*t_i, where integer k>1.
LINKS
M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
Michael Somos, A functional power series equation, Mathematics StackExchange answer.
FORMULA
T(0, k)=1 for k>=0, T(n, 0)=0 for n>=1; else T(n, k) = T(n, k-1) - T(n-1, k) + T(n-1, 2*k-1) + T(n-1, 2*k) for k<=n; else T(n, k) = Sum_{j=1..n+1} (-1)^(j-1)*C(n+1, j)*T(n, k-j) for k>n (Cook-Kleber).
Column k of T equals column 0 of the matrix k-th power of triangle A097710, which satisfies the matrix recurrence: A097710(n, k) = [A097710^2](n-1, k-1) + [A097710^2](n-1, k) for n>k>=0.
Sum_{k=0..n} T(n-k, k) = A093730(n) (antidiagonal row sums).
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
0, 1, 2, 3, 4, 5, 6, 7, 8, ...],
0, 2, 7, 15, 26, 40, 57, 77, 100, ...],
0, 7, 41, 123, 274, 515, 867, 1351, 1988, ...],
0, 41, 397, 1656, 4721, 10810, 21456, 38507, 64126, ...],
0, 397, 6377, 36987, 134899, 376175, 880032, .................],
0, 6377, 171886, 1391106, 6501536, ...],
0, 171886, 7892642, .....................];
Antidiagonals begin as:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 7, 7, 3, 1;
0, 41, 41, 15, 4, 1;
0, 397, 397, 123, 26, 5, 1;
0, 6377, 6377, 1656, 274, 40, 6, 1;
0, 171886, 171886, 36987, 4721, 515, 57, 7, 1;
MATHEMATICA
t[n_?Negative, _] = 0; t[0, _] = 1; t[n_, k_] /; k <= n := t[n, k] = t[n, k - 1] - t[n-1, k] + t[n - 1, 2 k - 1] + t[n - 1, 2 k]; t[n_, k_] := t[n, k] = Sum[(-1)^(j - 1)*Binomial[n + 1, j]*t[n, k - j], {j, 1, n + 1}]; Flatten[Table[t[i - k, k - 1], {i, 10}, {k, i}]] (* Jean-François Alcover, May 31 2011, after PARI prog. *)
PROG
(PARI) {T(n, k)=if(n<0, 0, if(n==0, 1, if(k==0, 0, if(k<=n, T(n, k-1)-T(n-1, k)+T(n-1, 2*k-1)+T(n-1, 2*k), sum(j=1, n+1, (-1)^(j-1)*binomial(n+1, j)*T(n, k-j))))))}
(PARI) {a(n, m) = my(A=1); for(k=1, n, A = (A - q^k * r * subst( subst(A, q, q^2), r, r^2)) / (1-q); subst(subst(A, r, q^(m-1)), q, 1)}; /* Michael Somos, Jun 19 2017 */
(SageMath)
@CachedFunction
def T(n, k):
if n<0: return 0
elif n==0: return 1
elif k==0: return 0
elif k<n+1: return T(n, k-1) - T(n-1, k) + T(n-1, 2*k-1) + T(n-1, 2*k)
else: return sum((-1)^(j-1)*binomial(n+1, j)*T(n, k-j) for j in range(1, n+2))
def A093729(n, k): return T(n-k, k)
flatten([[A093729(n, k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Feb 22 2024
CROSSREFS
Cf. A008934 (column k=1 of array and antidiagonals), A093730 (antidiagonal row sums).
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 14 2004; revised Oct 14 2005
STATUS
approved
page 1 2 3 4 5

Search completed in 0.014 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 15:29 EDT 2024. Contains 375017 sequences. (Running on oeis4.)