login
A099322
An inverse Catalan transform of J(3n)/J(3).
3
0, 1, 6, 43, 291, 1992, 13595, 92845, 633966, 4329023, 29560367, 201850896, 1378323999, 9411785201, 64267689006, 438847231427, 2996636337771, 20462312853336, 139725412120339, 954104794142789, 6515035056168654
OFFSET
0,3
COMMENTS
The g.f. is obtained from that of A015565 through the mapping g(x)->g(x(1-x)). A015565 may be retrieved through the mapping g(x)->g(xc(x)), where c(x) is the g.f. of A000108.
FORMULA
G.f.: x(1-x)/(1-7x-x^2+16x^3-8x^4);
a(n) = 7a(n-1) + a(n-2) - 16a(n-3) + 8a(n-4);
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*J(3n-3k)/J(3).
a(n) = Sum_{k=0..n} A109466(n,k)*A015565(k). - _Philippe Deléham_, Oct 30 2008
MATHEMATICA
LinearRecurrence[{7, 1, -16, 8}, {0, 1, 6, 43}, 30] (* _Harvey P. Dale_, Jul 19 2016 *)
CROSSREFS
Cf. A001045.
Sequence in context: A012872 A156676 A256713 * A014989 A015552 A091129
KEYWORD
easy,nonn
AUTHOR
_Paul Barry_, Nov 17 2004
STATUS
approved