The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099319 Numerators of an approximation of Riemann to pi(n). 2
0, 1, 3, 9, 3, 7, 4, 14, 61, 16, 35, 19, 41, 22, 22, 179, 97, 103, 109, 115, 115, 115, 121, 127, 65, 133, 45, 137, 143, 149, 155, 811, 817, 817, 817, 817, 847, 877, 877, 877, 907, 937, 967, 997, 997, 997, 1027, 1057, 268, 1087, 1087, 1087, 1117, 1147, 1147, 1147, 1147 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Edwards, p. 22, calls this J(n).
REFERENCES
J. C. Lagarias and A. M. Odlyzko, Computing pi(x): an analytic method, J. Algorithms, 8 (1987), 173-191.
H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974.
LINKS
FORMULA
See Maple code.
EXAMPLE
0, 1/2, 3/2, 9/4, 3, 7/2, 4, 14/3, 61/12, 16/3, 35/6, 19/3,... = A099319/A099320.
MAPLE
f:=proc(n) local i, m, p, t1, t2; t1:=0; for i from 1 to n do p:=ithprime(i); if p > n then break; fi; for m from 1 to n do if p^m > n then break; fi; if n = p^m then t2:=1/(2*m) else t2:=1/m; fi; t1:=t1+t2; od; od; t1; end;
MATHEMATICA
f[n_] := Module[{i, m, p, t1, t2}, t1 = 0; For[i = 1, i <= n, i++, p = Prime[i]; If[p > n, Break[]]; For[m = 1, m <= n, m++, If[p^m > n, Break[]]; If[n == p^m, t2 = 1/(2m), t2 = 1/m]; t1 = t1 + t2]]; t1];
Table[f[n] // Numerator, {n, 1, 100}] (* Jean-François Alcover, Apr 02 2023, after Maple code _)
CROSSREFS
Sequence in context: A224233 A021258 A200607 * A231828 A268580 A179802
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 17 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 14:48 EDT 2024. Contains 373331 sequences. (Running on oeis4.)