login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099319
Numerators of an approximation of Riemann to pi(n).
2
0, 1, 3, 9, 3, 7, 4, 14, 61, 16, 35, 19, 41, 22, 22, 179, 97, 103, 109, 115, 115, 115, 121, 127, 65, 133, 45, 137, 143, 149, 155, 811, 817, 817, 817, 817, 847, 877, 877, 877, 907, 937, 967, 997, 997, 997, 1027, 1057, 268, 1087, 1087, 1087, 1117, 1147, 1147, 1147, 1147
OFFSET
1,3
COMMENTS
Edwards, p. 22, calls this J(n).
REFERENCES
J. C. Lagarias and A. M. Odlyzko, Computing pi(x): an analytic method, J. Algorithms, 8 (1987), 173-191.
H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974.
FORMULA
See Maple code.
EXAMPLE
0, 1/2, 3/2, 9/4, 3, 7/2, 4, 14/3, 61/12, 16/3, 35/6, 19/3,... = A099319/A099320.
MAPLE
f:=proc(n) local i, m, p, t1, t2; t1:=0; for i from 1 to n do p:=ithprime(i); if p > n then break; fi; for m from 1 to n do if p^m > n then break; fi; if n = p^m then t2:=1/(2*m) else t2:=1/m; fi; t1:=t1+t2; od; od; t1; end;
MATHEMATICA
f[n_] := Module[{i, m, p, t1, t2}, t1 = 0; For[i = 1, i <= n, i++, p = Prime[i]; If[p > n, Break[]]; For[m = 1, m <= n, m++, If[p^m > n, Break[]]; If[n == p^m, t2 = 1/(2m), t2 = 1/m]; t1 = t1 + t2]]; t1];
Table[f[n] // Numerator, {n, 1, 100}] (* Jean-François Alcover, Apr 02 2023, after Maple code _)
CROSSREFS
Sequence in context: A224233 A021258 A200607 * A231828 A268580 A179802
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 17 2004
STATUS
approved