login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099319 Numerators of an approximation of Riemann to pi(n). 2
0, 1, 3, 9, 3, 7, 4, 14, 61, 16, 35, 19, 41, 22, 22, 179, 97, 103, 109, 115, 115, 115, 121, 127, 65, 133, 45, 137, 143, 149, 155, 811, 817, 817, 817, 817, 847, 877, 877, 877, 907, 937, 967, 997, 997, 997, 1027, 1057, 268, 1087, 1087, 1087, 1117, 1147, 1147, 1147, 1147 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Edwards, p. 22, calls this J(n).
REFERENCES
J. C. Lagarias and A. M. Odlyzko, Computing pi(x): an analytic method, J. Algorithms, 8 (1987), 173-191.
H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974.
LINKS
FORMULA
See Maple code.
EXAMPLE
0, 1/2, 3/2, 9/4, 3, 7/2, 4, 14/3, 61/12, 16/3, 35/6, 19/3,... = A099319/A099320.
MAPLE
f:=proc(n) local i, m, p, t1, t2; t1:=0; for i from 1 to n do p:=ithprime(i); if p > n then break; fi; for m from 1 to n do if p^m > n then break; fi; if n = p^m then t2:=1/(2*m) else t2:=1/m; fi; t1:=t1+t2; od; od; t1; end;
MATHEMATICA
f[n_] := Module[{i, m, p, t1, t2}, t1 = 0; For[i = 1, i <= n, i++, p = Prime[i]; If[p > n, Break[]]; For[m = 1, m <= n, m++, If[p^m > n, Break[]]; If[n == p^m, t2 = 1/(2m), t2 = 1/m]; t1 = t1 + t2]]; t1];
Table[f[n] // Numerator, {n, 1, 100}] (* Jean-François Alcover, Apr 02 2023, after Maple code _)
CROSSREFS
Sequence in context: A224233 A021258 A200607 * A231828 A268580 A179802
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Nov 17 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 9 04:17 EDT 2024. Contains 374171 sequences. (Running on oeis4.)