login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099325
Expansion of (sqrt(1+2x) + sqrt(1-2x))/(2*(1-2x)^(3/2)).
7
1, 3, 7, 16, 35, 76, 162, 344, 723, 1516, 3158, 6568, 13598, 28120, 57956, 119344, 245123, 503116, 1030542, 2109704, 4311786, 8808328, 17969372, 36644176, 74640430, 151985016, 309170332, 628741264, 1277540828, 2595198256
OFFSET
0,2
COMMENTS
The g.f. is transformed to 1/(1-x)^3 under the Chebyshev transformation A(x)->1/(1+x^2)A(x/(1+x^2)). Second binomial transform of the sequence with g.f. 1/c(-x), where c(x) is the g.f. of the Catalan numbers A000108.
Image of 2n+1 under the Riordan array (1/sqrt(1-4x^2),xc(x^2)). Hankel transform is (n+1)*(-1)^n. - Paul Barry, Oct 06 2007
a(n) is the minimum possible value for the apex of a triangle of numbers whose base consists of a permutation of the numbers 1 to n+1, and each number in a higher row is the sum of the two numbers directly below it. - Nathaniel Johnston, Apr 20 2011
LINKS
FORMULA
a(n) = Sum_{k=0..n} (k+1)*binomial(n, (n-k)/2)*binomial(k+2, 2)*(1+(-1)^(n-k))/(n+k+2).
a(n) = 2^n + Sum_{k=0..floor((n-1)/2)} (2*n-4*k-1)*binomial(n, k). - Nathaniel Johnston, Apr 20 2011
a(n) = M^n*V topmost term. M = an infinite tridiagonal matrix with all 1's in the super and subdiagonals, [1,0,0,0,...] as the main diagonal; and the rest zeros. V = the vector [1,2,3,...]. - Gary W. Adamson, Jan 30 2012
D-finite with recurrence n*a(n) + 2*(-n-1)*a(n-1) + 4*(-n+3)*a(n-2) + 8*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ 2^(n+1/2)*sqrt(n)/sqrt(Pi) * (1 + sqrt(2*Pi/n)/4). - Vaclav Kotesovec, Feb 13 2014
MAPLE
a:=proc(n)return 2^n+add((2*n-4*k-1)*binomial(n, k), k=0..floor((n-1)/2)): end:
seq(a(n), n=0..30); # Nathaniel Johnston, Apr 20 2011
MATHEMATICA
CoefficientList[Series[(Sqrt[1+2*x]+Sqrt[1-2*x])/(2*(1-2*x)^(3/2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 12 2004
STATUS
approved