login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099326 Expansion of ((1-2x)sqrt(1+2x)+sqrt(1-2x))/(2(1-2x)^(5/2)). 3
1, 4, 11, 28, 67, 156, 354, 792, 1747, 3820, 8278, 17832, 38174, 81368, 172644, 365104, 769411, 1617228, 3389838, 7090440, 14797546, 30828424, 64106716, 133113168, 275967022, 571415416, 1181585564, 2440680592, 5035637212 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)=sum{k=0..n, (k+1)binomial(n,(n-k)/2)binomial(k+3,3)(1+(-1)^(n-k))/(n+k+2)}. The g.f. is transformed to 1/(1-x)^4 under the Chebyshev transformation A(x)->1/(1+x^2)A(x/(1+x^2)). Second binomial transform of the sequence with g.f. 1/c(-x)^2, where c(x) is the g.f. of the Catalan numbers A000108.

0,1,4,11,28... is the image of the quarter-squares Floor((n+1)^2/4) (A002620(n+1)) under the Riordan array ((1+2x)/sqrt(1-4x^2), xc(x^2)). Hankel transform of A099326 has g.f. (1-x)/(1+x)^4. - Paul Barry, Oct 25 2007

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

FORMULA

a(n)=sum{k=0..n, (k+1)binomial(n, (n-k)/2)binomial(k+3, 3)(1+(-1)^(n-k))/(n+k+2)}.

a(n)=sum{k=0..n, C(n,k)*(Floor((abs(n-2k) + 1)^2/4)+Floor((abs(n-2k+1) + 1)^2/4)}; - Paul Barry, Oct 25 2007

Conjecture: n*(n-2)*a(n) +2*(-n^2+3)*a(n-1) -4*(n-1)*(n-4)*a(n-2) +8*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012

a(n) ~ n * 2^(n-1) * (1 + 2*sqrt(2/(Pi*n))). - Vaclav Kotesovec, Feb 12 2014

MATHEMATICA

CoefficientList[Series[((1-2*x)*Sqrt[1+2*x]+Sqrt[1-2*x])/(2*(1-2*x)^(5/2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)

CROSSREFS

Cf. A099325, A099327.

Sequence in context: A113478 A056601 A003230 * A127985 A005409 A245124

Adjacent sequences:  A099323 A099324 A099325 * A099327 A099328 A099329

KEYWORD

easy,nonn

AUTHOR

Paul Barry, Oct 12 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 11:26 EDT 2019. Contains 328108 sequences. (Running on oeis4.)