OFFSET
0,2
COMMENTS
For n > 0, integers in 3/2 * the Fibonacci sequence. - Vladimir Joseph Stephan Orlovsky, Oct 25 2009
LINKS
Stefano Spezia, Table of n, a(n) for n = 0..1500
Index entries for linear recurrences with constant coefficients, signature (4,1).
FORMULA
G.f.: (1-x-x^2)/(1-4*x-x^2).
a(n) = Sum_{k=0..n} A155161(n,k)*3^k. - Philippe Deléham, Feb 08 2012
E.g.f.: 1 + 3*exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Oct 06 2024
MATHEMATICA
f[n_]:=Fibonacci[n]; lst={}; Do[a=f[n]*(3/2); If[IntegerQ[a], AppendTo[lst, a]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)
PROG
(PARI) Vec((1-x-x^2)/((1-4*x-x^2)+O(x^99))) \\ Charles R Greathouse IV, Dec 09 2014
(PARI) concat(1, select(n->denominator(n)==1, [fibonacci(n)*3/2|n<-[1..50]])) \\ Charles R Greathouse IV, Dec 09 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Jan 21 2009
EXTENSIONS
Entries corrected by Paolo P. Lava, Jan 26 2009
STATUS
approved