login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155179
a(n) = 4*a(n-1)+a(n-2), n>2; a(0)=1, a(1)=3, a(2)=12.
3
1, 3, 12, 51, 216, 915, 3876, 16419, 69552, 294627, 1248060, 5286867, 22395528, 94868979, 401871444, 1702354755, 7211290464, 30547516611, 129401356908, 548152944243, 2322013133880, 9836205479763, 41666835052932, 176503545691491, 747681017818896, 3167227616967075
OFFSET
0,2
COMMENTS
For n > 0, integers in 3/2 * the Fibonacci sequence. - Vladimir Joseph Stephan Orlovsky, Oct 25 2009
FORMULA
G.f.: (1-x-x^2)/(1-4*x-x^2).
a(n) = Sum_{k=0..n} A155161(n,k)*3^k. - Philippe Deléham, Feb 08 2012
E.g.f.: 1 + 3*exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Oct 06 2024
MATHEMATICA
f[n_]:=Fibonacci[n]; lst={}; Do[a=f[n]*(3/2); If[IntegerQ[a], AppendTo[lst, a]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 25 2009 *)
PROG
(PARI) Vec((1-x-x^2)/((1-4*x-x^2)+O(x^99))) \\ Charles R Greathouse IV, Dec 09 2014
(PARI) concat(1, select(n->denominator(n)==1, [fibonacci(n)*3/2|n<-[1..50]])) \\ Charles R Greathouse IV, Dec 09 2014
CROSSREFS
Cf. A155161.
Sequence in context: A043291 A135343 A083314 * A228770 A104268 A081704
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Jan 21 2009
EXTENSIONS
Entries corrected by Paolo P. Lava, Jan 26 2009
STATUS
approved