login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*a(n-1)+a(n-2), n>2; a(0)=1, a(1)=3, a(2)=12.
3

%I #40 Oct 07 2024 01:27:56

%S 1,3,12,51,216,915,3876,16419,69552,294627,1248060,5286867,22395528,

%T 94868979,401871444,1702354755,7211290464,30547516611,129401356908,

%U 548152944243,2322013133880,9836205479763,41666835052932,176503545691491,747681017818896,3167227616967075

%N a(n) = 4*a(n-1)+a(n-2), n>2; a(0)=1, a(1)=3, a(2)=12.

%C For n > 0, integers in 3/2 * the Fibonacci sequence. - _Vladimir Joseph Stephan Orlovsky_, Oct 25 2009

%H Stefano Spezia, <a href="/A155179/b155179.txt">Table of n, a(n) for n = 0..1500</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,1).

%F G.f.: (1-x-x^2)/(1-4*x-x^2).

%F a(n) = Sum_{k=0..n} A155161(n,k)*3^k. - _Philippe Deléham_, Feb 08 2012

%F E.g.f.: 1 + 3*exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - _Stefano Spezia_, Oct 06 2024

%t f[n_]:=Fibonacci[n]; lst={};Do[a=f[n]*(3/2);If[IntegerQ[a],AppendTo[lst,a]],{n,0,5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Oct 25 2009 *)

%o (PARI) Vec((1-x-x^2)/((1-4*x-x^2)+O(x^99))) \\ _Charles R Greathouse IV_, Dec 09 2014

%o (PARI) concat(1,select(n->denominator(n)==1,[fibonacci(n)*3/2|n<-[1..50]])) \\ _Charles R Greathouse IV_, Dec 09 2014

%Y Cf. A155161.

%K nonn,easy

%O 0,2

%A _Philippe Deléham_, Jan 21 2009

%E Entries corrected by _Paolo P. Lava_, Jan 26 2009