login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104268
a(n) = 2*4^(n-1) - (3n-1)/(2n+2)*C(2n,n).
0
1, 3, 12, 51, 218, 926, 3902, 16323, 67866, 280746, 1156576, 4748398, 19439332, 79391708, 323584322, 1316578403, 5348814842, 21702312818, 87955584152, 356114261498, 1440568977932, 5822909703908, 23520345224732
OFFSET
1,2
COMMENTS
Cardinality of the set of nesting-similarity classes.
Number of Lyngsø-Pedersen structures with n arcs [Saule et al., Theorem 1]. - Eric M. Schmidt, Sep 20 2017
LINKS
Cédric Saule, Mireille Regnier, Jean-Marc Steyaert, Alain Denise, Counting RNA pseudoknotted structures (extended abstract), dmtcs:2834 - Discrete Mathematics & Theoretical Computer Science, January 1, 2010, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010)
FORMULA
G.f.: C+z^2(2zC'+C)^2C, with C(z) the g.f. of the Catalan numbers.
G.f.: (x*(8*x+5*Sqrt[1-4 x]-9)-2*Sqrt[1-4 x]+2)/(2*(1-4*x)*x^2). [Harvey P. Dale, Oct 03 2011]
D-finite with recurrence 2*(n+1)*a(n) +(-21*n+1)*a(n-1) +2*(36*n-43)*a(n-2) +40*(-2*n+5)*a(n-3)=0. - R. J. Mathar, Jun 08 2016
MATHEMATICA
Table[2 4^(n-1)-(3n-1)/(2n+2) Binomial[2n, n], {n, 30}] (* Harvey P. Dale, Oct 03 2011 *)
CROSSREFS
Equals A006419(n-1) + A000108(n).
Sequence in context: A083314 A155179 A228770 * A081704 A166482 A007854
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Apr 17 2005
STATUS
approved