OFFSET
0,2
COMMENTS
Conjecture: a(n) is the number of tilings of a 4 X 4n rectangle into L tetrominoes (no reflections, only rotations). - Nicolas Bělohoubek, Feb 12 2022
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (7,-13,7,-1).
FORMULA
G.f.: (1 - 4x + 4x^2 - x^3)/(1 - 7x + 13x^2 - 7x^3 + x^4).
a(n) = Sum_{k=0..n} binomial(n+k,2k) * Sum_{j=0..k} binomial(k+j,2j).
a(n) ~ (1 + 1/sqrt(5) + 2*sqrt(31/290 + 13/(58*sqrt(5)))) * ((7 + sqrt(5) + sqrt(38 + 14*sqrt(5)))^n / 2^(2*n+2)). - Vaclav Kotesovec, Feb 22 2022
MATHEMATICA
CoefficientList[Series[(1-4x+4x^2-x^3)/(1-7x+13x^2-7x^3+x^4), {x, 0, 30}], x] (* Harvey P. Dale, Mar 23 2011 *)
LinearRecurrence[{7, -13, 7, -1}, {1, 3, 12, 51}, 50] (* G. C. Greubel, May 15 2016 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 14 2009
STATUS
approved