login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166482
a(n) = Sum_{k=0..n} binomial(n+k,2k)*Fibonacci(2k+1).
1
1, 3, 12, 51, 221, 965, 4227, 18540, 81363, 357145, 1567849, 6883059, 30218028, 132664227, 582428789, 2557009709, 11225925267, 49284687948, 216372426339, 949930508209, 4170438905425, 18309298027683, 80382521554380
OFFSET
0,2
COMMENTS
Conjecture: a(n) is the number of tilings of a 4 X 4n rectangle into L tetrominoes (no reflections, only rotations). - Nicolas Bělohoubek, Feb 12 2022
FORMULA
G.f.: (1 - 4x + 4x^2 - x^3)/(1 - 7x + 13x^2 - 7x^3 + x^4).
a(n) = Sum_{k=0..n} binomial(n+k,2k) * Sum_{j=0..k} binomial(k+j,2j).
a(n) ~ (1 + 1/sqrt(5) + 2*sqrt(31/290 + 13/(58*sqrt(5)))) * ((7 + sqrt(5) + sqrt(38 + 14*sqrt(5)))^n / 2^(2*n+2)). - Vaclav Kotesovec, Feb 22 2022
MATHEMATICA
CoefficientList[Series[(1-4x+4x^2-x^3)/(1-7x+13x^2-7x^3+x^4), {x, 0, 30}], x] (* Harvey P. Dale, Mar 23 2011 *)
LinearRecurrence[{7, -13, 7, -1}, {1, 3, 12, 51}, 50] (* G. C. Greubel, May 15 2016 *)
CROSSREFS
Sequence in context: A228770 A104268 A081704 * A007854 A151182 A151316
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 14 2009
STATUS
approved