Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Mar 15 2022 08:42:57
%S 1,3,12,51,221,965,4227,18540,81363,357145,1567849,6883059,30218028,
%T 132664227,582428789,2557009709,11225925267,49284687948,216372426339,
%U 949930508209,4170438905425,18309298027683,80382521554380
%N a(n) = Sum_{k=0..n} binomial(n+k,2k)*Fibonacci(2k+1).
%C Conjecture: a(n) is the number of tilings of a 4 X 4n rectangle into L tetrominoes (no reflections, only rotations). - _Nicolas Bělohoubek_, Feb 12 2022
%H G. C. Greubel, <a href="/A166482/b166482.txt">Table of n, a(n) for n = 0..500</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-13,7,-1).
%F G.f.: (1 - 4x + 4x^2 - x^3)/(1 - 7x + 13x^2 - 7x^3 + x^4).
%F a(n) = Sum_{k=0..n} binomial(n+k,2k) * Sum_{j=0..k} binomial(k+j,2j).
%F a(n) ~ (1 + 1/sqrt(5) + 2*sqrt(31/290 + 13/(58*sqrt(5)))) * ((7 + sqrt(5) + sqrt(38 + 14*sqrt(5)))^n / 2^(2*n+2)). - _Vaclav Kotesovec_, Feb 22 2022
%t CoefficientList[Series[(1-4x+4x^2-x^3)/(1-7x+13x^2-7x^3+x^4), {x,0,30}],x] (* _Harvey P. Dale_, Mar 23 2011 *)
%t LinearRecurrence[{7, -13, 7, -1}, {1, 3, 12, 51}, 50] (* _G. C. Greubel_, May 15 2016 *)
%K easy,nonn
%O 0,2
%A _Paul Barry_, Oct 14 2009