login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104266
Largest n-digit square with no zero digits.
3
9, 81, 961, 9216, 99856, 978121, 9998244, 99321156, 999887641, 9978811236, 99999515529, 999332111556, 9999995824729, 99978881115136, 999999961946176, 9999333211115556, 99999999356895225, 999978918111112681, 9999999986285964964, 99999333321111155556
OFFSET
1,1
COMMENTS
See Formula section for exact formula for terms whose index n is divisible by 4, and upper bounds for other cases; see Links for additional information on those other cases. - Jon E. Schoenfield, Mar 30 2015
FORMULA
From Jon E. Schoenfield, Mar 31 2015: (Start)
If n is divisible by 4, then a(n) = (10^(n/2) - ceiling(10^(n/4)/3))^2;
otherwise, if n is even, then a(n) < 10^(n) * (1 - (10^-((n-2)/4))* 2 / sqrt(90/1.000000000001026)) (see Links for derivation), except that a(2) = 81.
If n is odd, then a(n) ~ (floor(10^(n/2)))^2. (Although (floor(10*(n/2)))^2 gives an obvious upper bound for a(n) for all n, it seems to be a much tighter upper bound for odd values of n.) (End)
EXAMPLE
a(3) = Max{...., 729, 784, 841, 961} = 961.
MAPLE
f:= proc(n) local r;
r:= floor(sqrt(10^n));
while has(convert(r^2, base, 10), 0) do r:= r-1 od:
r^2
end proc:
seq(f(n), n=1..24); # Robert Israel, Mar 29 2015
MATHEMATICA
f[n_] := Block[{k = Floor[ Sqrt[10^n]]}, While[ Union[ IntegerDigits[ k^2]][[1]] == 0, k-- ]; k^2]; Table[ f[n], {n, 18}] (* Robert G. Wilson v, Mar 03 2005 *)
PROG
(PARI) a(n)=k=floor(sqrt(10^n)); while(k, if(type(k)=="t_INT"&&vecmin(digits(k^2)), return(k^2)); k--)
vector(20, n, a(n)) \\ Derek Orr, Mar 29 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Feb 26 2005
EXTENSIONS
More terms from Robert G. Wilson v, Mar 03 2005
More terms from Jon E. Schoenfield, Mar 29 2015
STATUS
approved