login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A152175 Triangle read by rows: T(n,k) is the number of k-block partitions of an n-set up to rotations. 20
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 7, 18, 13, 3, 1, 1, 9, 43, 50, 20, 3, 1, 1, 19, 126, 221, 136, 36, 4, 1, 1, 29, 339, 866, 773, 296, 52, 4, 1, 1, 55, 946, 3437, 4281, 2303, 596, 78, 5, 1, 1, 93, 2591, 13250, 22430, 16317, 5817, 1080, 105, 5, 1, 1, 179, 7254, 51075, 115100, 110462, 52376, 13299, 1873, 147, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

Number of n-bead necklace structures using exactly k different colored beads. Turning over the necklace is not allowed. Permuting the colors does not change the structure. - Andrew Howroyd, Apr 06 2017

REFERENCES

M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1275

E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.

Tilman Piesk, Partition related number triangles

FORMULA

T(n,k) = (1/n)*Sum_{d|n} phi(d)*A(d,n/d,k), where A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)). - Robert A. Russell, Oct 16 2018

EXAMPLE

Triangle begins with T(1,1):

  1;

  1,   1;

  1,   1,     1;

  1,   3,     2,      1;

  1,   3,     5,      2,      1;

  1,   7,    18,     13,      3,      1;

  1,   9,    43,     50,     20,      3,      1;

  1,  19,   126,    221,    136,     36,      4,      1;

  1,  29,   339,    866,    773,    296,     52,      4,     1;

  1,  55,   946,   3437,   4281,   2303,    596,     78,     5,    1;

  1,  93,  2591,  13250,  22430,  16317,   5817,   1080,   105   , 5,   1;

  1, 179,  7254,  51075, 115100, 110462,  52376,  13299,  1873,  147,   6, 1;

  1, 315, 20125, 194810, 577577, 717024, 439648, 146124, 27654, 3025, 187, 6, 1;

  ...

For T(4,2)=3, the set partitions are AAAB, AABB, and ABAB.

For T(4,3)=2, the set partitions are AABC and ABAC.

MATHEMATICA

(* Using recursion formula from Gilbert and Riordan:*)

Adn[d_, n_] := Adn[d, n] = Which[0==n, 1, 1==n, DivisorSum[d, x^# &],

  1==d, Sum[StirlingS2[n, k] x^k, {k, 0, n}],

  True, Expand[Adn[d, 1] Adn[d, n-1] + D[Adn[d, n - 1], x] x]];

Table[CoefficientList[DivisorSum[n, EulerPhi[#] Adn[#, n/#] &]/(x n), x],

   {n, 1, 10}] // Flatten (* Robert A. Russell, Feb 23 2018 *)

Adnk[d_, n_, k_] := Adnk[d, n, k] = If[n>0 && k>0, Adnk[d, n-1, k]k + DivisorSum[d, Adnk[d, n-1, k-#] &], Boole[n==0 && k==0]]

Table[DivisorSum[n, EulerPhi[#]Adnk[#, n/#, k]&]/n, {n, 1, 12}, {k, 1, n}] // Flatten (* Robert A. Russell, Oct 16 2018 *)

PROG

(PARI) \\ see A056391 for Polya enumeration functions

T(n, k) = NonequivalentStructsExactly(CyclicPerms(n), k); \\ Andrew Howroyd, Oct 14 2017

(PARI)

R(n) = {Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}

{ my(A=R(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

CROSSREFS

Columns 2-6 are A056295, A056296, A056297, A056298, A056299.

Row sums are A084423.

Partial row sums include A000013, A002076, A056292, A056293, A056294.

Cf. A075195, A087854, A008277 (set partitions), A284949 (up to reflection), A152176 (up to rotation and reflection).

A(1,n,k) in formula is the Stirling subset number A008277.

A(2,n,k) in formula is A293181; A(3,n,k) in formula is A294201.

Sequence in context: A242950 A304972 A152176 * A321620 A134520 A188316

Adjacent sequences:  A152172 A152173 A152174 * A152176 A152177 A152178

KEYWORD

nonn,tabl,easy

AUTHOR

Vladeta Jovovic, Nov 27 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 17:17 EST 2019. Contains 329970 sequences. (Running on oeis4.)