This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Ga

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Ga


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


G.C.D.: see entries under GCD
g.c.d.: see entries under GCD
G.F.: see generating functions
g.f.: see generating functions
Gaelic: A001368
Gaelic: see also Index entries for sequences related to number of letters in n
Galego: see also Index entries for sequences related to number of letters in n

games , sequences related to :
games, born on day n: A047995, A037142, A065401, A065402, A065407
games, Grundy's game: see Grundy's game
games: see also checkers
games: see also chess
games: see also Mancala
games: see also Towers of Hanoi
games: see also under individual names
gamma (Euler-Mascheroni constant), sequences related to :
gamma (Euler-Mascheroni constant): A002852* (continued fraction for), A001620* (decimal expansion of)
gamma function, sequences related to :
gamma function: A005446, A005147, A001164, A005146, A005447, A001163, A068467, A202623
gamma function at 1/k: A002161 (2), A073005 (3), A175380 (5), A175379 (6), A220086 (7), A203142 (8), A203140 (12), A203139 (16), A203138 (24), A203137 (48)
gamma function at t/k, t>1: A073006 (2/3), A202523 (4/3), A220605 (2/7), A019704 (3/2), A068465 (3/4), A220608 (3/7), A203143 (3/8), A220609 (4/7), A203129 (5/3), A068467 (5/4), A203145 (5/6), A220606 (5/7), A220607 (6/7),
gamma function: see also factorials

gaps: A002386, A005250, A002540, A000101, A000230, A000232, A001549, A001632
gaps: see also primes, gaps between
gates:: A005610, A005611, A005609, A005608
Gauss-Kuzmin-Wirsing constant: A038517

Gaussian binomial (or q-binomial) coefficients, sequences related to :
Gaussian or q-binomial coefficients [n,k]_q (= q-integers (q^n-1)/(q-1) for k=1; [n,k]_q = 1 (A000012) for k=0):
q = 2 : A000225, A006095, A006096, A006097, A006110 (k=5), A022189, A022190, A022191, A022192, A022193, A022194, A022195 (k=12); A006098 [2n,n], A006099 [n,n/2], A006116 (sum)
q = 3 : A003462. A006100, A006101, A006102, A022196 (k=5), A022197, A022198, A022199, A022200, A022201, A022202, A022203 (k=12); A006103 [2n,n], A006104 [n,n/2], A006117 (sum).
q = 4 : A002450, A006105, A006106, A006107, A022204 (k=5), A022205, A022206, A022207, A022208, A022209, A022210, A022211 (k=12); A006108 [2n,n], A006109 [n,n/2].
q = 5 : A003463, A006111, A006112, A006113, A022212 (k=5), A022213, A022214, A022215, A022216, A022217, A022218, A022219 (k=12); A006114 [2n,n], A006115 [n,n/2] A006119 (sum).
q = 6 : A003464, A022220, A022221, A022222, A022223 (k=5), A022224, A022225, A022226, A022227, A022228, A022229, A022230 (k=12). A006120 (sum).
q = 7 : A023000, A022231, A022232, A022233, A022234 (k=5), A022235, A022236, A022237, A022238, A022239, A022240, A022241 (k=12). A006121 (sum).
q = 8 : A002452, A022242, A022243, A022244, A022245 (k=5), A022246, A022247, A022248, A022249, A022250, A022251, A022252 (k=12). A006122 (sum).
q = 9 : A002452, A022253, A022254, A022255, A022256 (k=5).
For q = 10,...,25, k = 1: (n,1)_q = (q^(n+1)-1)/(q-1), see partial sums of powers
q = -2: A077925 (k=1), A015249, A015266, A015287, A015305, A015323, A015338, A015356, A015371, A015386, A015405, A015423 (k=12).
q = -3: A014983 (k=1), A015251, A015268, A015288, A015306, A015324, A015340, A015357, A015375, A015388, A015407, A015424 (k=12).
q = -4: A014985 (k=1), A015253, A015271, A015289, A015308, A015326, A015341, A015359, A015376, A015390, A015408, A015425 (k=12).
q = -5: A014986 (k=1), A015255, A015272, A015291, A015309, A015327, A015344, A015360, A015377, A015391, A015409, A015427 (k=12).
q = -6: A014987 (k=1), A015257, A015273, A015292, A015310, A015328, A015345, A015361, A015378, A015392, A015410, A015429 (k=12).
q = -7: A014989 (k=1), A015258, A015275, A015293, A015312, A015330, A015346, A015363, A015379, A015393, A015411, A015430 (k=12).
q = -8: A014990 (k=1), A015259, A015276, A015294, A015313, A015331, A015347, A015364, A015380, A015395, A015413, A015431 (k=12).
q = -9: A014991 (k=1), A015260, A015277, A015295, A015315, A015332, A015349, A015365, A015381, A015397, A015414, A015432 (k=12).
q =-10: A014992 (k=1), A015261, A015278, A015298, A015316, A015333, A015350, A015367, A015382, A015398, A015417, A015433 (k=12).
q =-11: A014993 (k=1), A015262, A015279, A015300, A015317, A015334, A015353, A015368, A015383, A015499, A015418, A015434 (k=12).
q =-12: A014994 (k=1), A015264, A015281, A015302, A015319, A015336, A015354, A015369, A015384, A015401, A015421, A015436 (k=12).
q =-13: A015000 (k=1), A015265, A015286, A015303, A015321, A015337, A015355, A015370, A015385, A015402, A015422, A015438 (k=12).
Gaussian binomial coefficients, Maple code for : A006516 (Maple code only)
Gaussian binomial coefficients, tables of :
q = 2, ..., 24: A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188.
q = -2, ..., -15: A015109 (q=-2), A015110 (q=-3), A015112 (q=-4), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15).
Gaussian binomial coefficients: (1): A006116 (q=2), A006117, A006118, A006119, A006120, A006121, A006122, A006099, A006098, A006104, A006103, A006109, A006108, A006115
Gaussian binomial coefficients: (2): A006114, A006095, A006100, A006096, A006105, A006097, A006111, A006101, A006110, A006106, A006102, A006112, A006107, A006113
Gaussian integers and primes , sequences related to :
Gaussian integers and primes (1): A002145, A006495, A006496, A027206, A036693, A036694, A036695, A036696, A036697, A036698, A036699, A036700
Gaussian integers and primes (2): A036701, A036702, A036703, A036704, A036705, A036706, A036707, A036708, A036709, A036710, A036711, A036712
Gaussian integers and primes (3): A036713, A036714, A036715, A036716, A045326, A055025, A055026, A055027, A055028, A055029, A055683, A057352
Gaussian integers and primes (4): A057368, A057429, A058767, A058770, A058771, A058772, A058775, A058777, A058778, A058779, A058782, A062327
Gaussian integers and primes (5): A062711, A073253, A078458, A078908, A078909, A078910, A078911
Gaussian primes: A055025, A055026, A055027, A055028, A055029
Gaussian primes: see also entries under Gaussian integers
GCD , sequences related to :
GCD(x,y): A003989*, A050873*, A072030*; A018805 (pairs with gcd = d)
GCD, greedy sequence: see EKG sequence
GCD: A007464, A006579
GCD: the canonical spelling for "greatest common divisor" in the OEIS is GCD (not gcd) (except of course in Maple and PARI lines)
gcd: the canonical spelling for "greatest common divisor" in the OEIS is GCD (not gcd) (except of course in Maple and PARI lines)

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools