login
A015423
Gaussian binomial coefficient [ n,12 ] for q=-2.
2
1, 2731, 14913991, 54301841231, 237244744338239, 942314556807454559, 3920970870875818419999, 15935828658299317547308959, 65529064844612576067331339935, 267883966717492783113707839256735
OFFSET
12,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..12} ((-2)^(n-i+1)-1)/((-2)^i-1) (by definition). - Vincenzo Librandi, Nov 06 2012
MATHEMATICA
Table[QBinomial[n, 12, -2], {n, 12, 20}] (* Vincenzo Librandi, Nov 06 2012 *)
PROG
(Sage) [gaussian_binomial(n, 12, -2) for n in range(12, 22)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=-2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..25]]; // Vincenzo Librandi, Nov 06 2012
CROSSREFS
Diagonal k=12 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012
Sequence in context: A116461 A266229 A076575 * A260543 A145647 A251946
KEYWORD
nonn,easy
STATUS
approved