login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A015334 Gaussian binomial coefficient [ n,6 ] for q = -11. 2
1, 1623931, 2900866919644, 5135204548028317764, 9097949506151746630368210, 16117472448301015835209097979510, 28553101725457044215054700034776694620 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,2

REFERENCES

J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 6..100

FORMULA

G.f.: x^6/((1-x)*(1+11*x)*(1-121*x)*(1+1331*x)*(1-14641*x)*(1+161051*x)*(1-1771561*x)). - Vincenzo Librandi, Oct 30 2012

a(n) = (-1 +11^(6n-15) +198134223*11^(2n-9)*(1 -11^(2n-5)) +1330*11^(n-5)*(111 +111*11^(4n-10) -1637362*11^(2n-7))*(-1)^n) / 8011794142389510144000. - Bruno Berselli, Oct 30 2012

MATHEMATICA

Table[QBinomial[n, 6, -11], {n, 6, 10}] (* Vincenzo Librandi, Oct 29 2012 *)

PROG

(Sage) [gaussian_binomial(n, 6, -11) for n in xrange(6, 13)] # Zerinvary Lajos, May 27 2009

(MAGMA) /* By definition: */ r:=6; q:=-11; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..12]]; // Bruno Berselli, Oct 30 2012

CROSSREFS

Sequence in context: A103793 A064117 A173428 * A015377 A296450 A255042

Adjacent sequences:  A015331 A015332 A015333 * A015335 A015336 A015337

KEYWORD

nonn,easy

AUTHOR

Olivier Gérard, Dec 11 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 23 05:36 EDT 2019. Contains 321422 sequences. (Running on oeis4.)