This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Con

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Con


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


concatenate divisors: A037278*
concatenate prime factors: A037276*, A048595* (base 2)
concatenation of all numbers up through n, see here
concatenation: There is no universally accepted symbol for concatenation!
concatenation: 'a1 followed by a2' is used in A034821
concatenation: a1 # a2 is used in A133344
concatenation: a1 & a2 and a1 + a2 may also be used
concatenation: a1 . a2 is used in A115437 (as in Perl)
concatenation: a1 // a2 is used in A115429 (as in Fortran)
concatenation: a1 : a2 is used in A089591
concatenation: a1 U a2 is used in A165784
concatenation: a1 ^ a2 is used in A091975 (cf. A091844)
concatenation: a1a2 is used in A089710
concatenation: a1_a2 is used in A153164
concatenation: Maple uses parse(cat(a1, a2, ..., an))
concatenation: Mathematica uses FromDigits[Join[IntegerDigits[a1], IntegerDigits[a2], ..., IntegerDigits[an]]] or ToExpression[StringJoin[ToString[a1], ToString[a2], ..., ToString[an]]] or FromDigits["a1"<>"a2"<>...<>"an"]
concatenation: Pari uses eval(Str(a1, a2, ..., an))
conditionally convergent series: A002387, A092324, A092267, A092753
conference matrices: see matrices, conference

configurations , sequences related to :
configurations (combinatorial or geometrical): A001403* A099999 A023994 A005787 A000698 A100001 A098702 A098804 A098822 A098841 A098851 A098852 A098854

Congruence property:: A002703, A002704, A002705
Congruences:: A001915, A001916
congruent mod 1 to 0 : A000004
congruent mod 10 :

to 0 (not) : A052382; to 0 : A008592, to 1 : A017281, to 2 : A017293, to 3 : A017305, to 4 : A017317, to 5 : A017329, to 6 : A017341, to 7 : A017353, to 8 : A017365, to 9 : A017377,
to {1, 7} : A131229, to {1, 9} : A090771, to {2, 8} : A090772, to {4, 6} : A090773

congruent mod 2 : to 0 (not) : A005408, to 0 : A005843, to 1 (not) : A005843, to 1 : A005408.

congruent mod 3 :

to 0 (not) : A001651, to 0 : A008585, to 1 (not) : A007494, to 1 : A016777, to 2 (not) : A032766, to 2 : A016789
to {0, 1} : A032766, to {0, 2} : A007494, to {1, 2} : A001651.

congruent mod 4 :

to 0 (not) : A042968, to 0 : A008586, to 1 (not) : A004772, to 1 : A016813, to 2 (not) : A042965, to 2 : A016825, to 3 (not) : A004773, to 3 : A004767,
to {0, 1, 2} : A004773, to {0, 1, 3} : A042965, to {0, 1} : A042948, to {0, 2, 3} : A004772, to {0, 3} : A014601, to {1, 2, 3} : A042968, to {1, 2} : A042963, to {2, 3} : A042964.

congruent mod 5 :

to 0 (not) : A047201, to 0 : A008587, to 1 (not) : A047203, to 1 : A016861, to 2 (not) : A047207, to 2 : A016873, to 3 (not) : A032769, to 3 : A016885, to 4 (not) : A001068, to 4 : A016897,
to {0, 1, 2, 3} : A001068, to {0, 1, 2, 4} : A032769, to {0, 1, 2} : A047217, to {0, 1, 3, 4} : A047207, to {0, 1, 3} : A047220, to {0, 1, 4} : A008854, to {0, 1} : A008851, to {0, 2, 3, 4} : A047203, to {0, 2, 3} : A047222, to {0, 2, 4} : A047212, to {0, 2} : A047215, to {0, 3, 4} : A047205, to {0, 3} : A047218, to {0, 4} : A047208,
to {1, 2, 3, 4} : A047201, to {1, 2, 3} : A047223, to {1, 2, 4} : A032793, to {1, 2} : A047216, to {1, 3, 4} : A047206, to {1, 3} : A047219, to {1, 4} : A047209, to {2, 3, 4} : A047202, to {2, 3} : A047221, to {2, 4} : A047211, to {3, 4} : A047204.

congruent mod 6 :

to 0 (not) : A047253, to 0 : A008588, to 1 (not) : A047248, to 1 : A016921, to 2 (not) : A047252, to 2 : A016933, to 3 (not) : A047263, to 3 : A016945, to 4 (not) : A047256, to 4 : A016957, to 5 (not) : A047226, to 5 : A016969,
to {0, 1, 2, 3, 4} : A047226, to {0, 1, 2, 3, 5} : A047256, to {0, 1, 2, 3} : A047246, to {0, 1, 2, 4, 5} : A047263, to {0, 1, 2, 4} : A047237, to {0, 1, 2, 5} : A047269, to {0, 1, 2} : A047240, to {0, 1, 3, 4, 5} : A047252, to {0, 1, 3, 5} : A047273, to {0, 1, 3} : A047242, to {0, 1, 4, 5} : A047260, to {0, 1, 4} : A047234, to {0, 1, 5} : A047266, to {0, 1} : A047225,
to {0, 2, 3, 4, 5} : A047248, to {0, 2, 3, 4} : A047229, to {0, 2, 3} : A047244, to {0, 2, 4, 5} : A047262, to {0, 2, 5} : A047267, to {0, 2} : A047238, to {0, 3, 4, 5} : A047250, to {0, 3, 4} : A047231, to {0, 3, 5} : A047271, to {0, 4, 5} : A047258, to {0, 4} : A047233, to {0, 5} : A047264,
to {1, 2, 3, 4, 5} : A047248, to {1, 2, 3, 4} : A031477, to {1, 2, 3, 5} : A047255, to {1, 2, 3} : A047245, to {1, 2, 4} : A047236, to {1, 2, 5} : A047268, to {1, 2} : A047239, to {1, 3, 4, 5} : A047251, to {1, 3, 4} : A029739, to {1, 3} : A047241, to {1, 4, 5} : A047259, to {1, 5} : A007310,
to {2, 3, 4, 5} : A047247, to {2, 3, 4} : A047228, to {2, 3, 5} : A047254, to {2, 3} : A047243, to {2, 4, 5} : A047261, to {2, 4} : A047235, to {3, 4, 5} : A047249, to {3, 4} : A047230, to {3, 5} : A047270, to {4, 5} : A047257

congruent mod 7:

to 0 (not) : A047304, to 0 : A008589, to 1 (not) : A047306, to 1 : A016993, to 2 (not) : A047310, to 2 : A017005, to 3 (not) : A047318, to 3 : A017017, to 4 (not) : A032775, to 4 : A017029, to 5 (not) : A047303, to 5 : A017041, to 6 (not) : A047368, to 6 : A017053,
to {0, 1, 2, 3, 4, 5} : A047368, to {0, 1, 2, 3, 4, 6} : A047303, to {0, 1, 2, 3, 4} : A047337, to {0, 1, 2, 3, 5, 6} : A032775, to {0, 1, 2, 3, 5} : A047373, to {0, 1, 2, 3, 6} : A047287, to {0, 1, 2, 3} : A047361, to {0, 1, 2, 4, 5, 6} : A047318, to {0, 1, 2, 4, 5} : A047381, to {0, 1, 2, 4, 6} : A047295, to {0, 1, 2, 4} : A047351, to {0, 1, 2, 5, 6} : A047326, to {0, 1, 2, 5} : A047388, to {0, 1, 2, 6} : A047279, to {0, 1, 2} : A047354,
to {0, 1, 3, 4, 5, 6} : A047310, to {0, 1, 3, 4, 5} : A047367, to {0, 1, 3, 4, 6} : A047299, to {0, 1, 3, 4} : A047344, to {0, 1, 3, 5, 6} : A047330, to {0, 1, 3, 5} : A047392, to {0, 1, 3, 6} : A047283, to {0, 1, 3} : A047357, to {0, 1, 4, 5, 6} : A047314, to {0, 1, 4, 5} : A047377, to {0, 1, 4, 6} : A047291, to {0, 1, 4} : A047347, to {0, 1, 5, 6} : A047322, to {0, 1, 5} : A047384, to {0, 1, 6} : A047275, to {0, 1} : A047274,
to {0, 2, 3, 4, 5, 6} : A047306, to {0, 2, 3, 4, 5} : A047363, to {0, 2, 3, 4, 6} : A047301, to {0, 2, 3, 4} : A047340, to {0, 2, 3, 5, 6} : A047332, to {0, 2, 3, 5} : A047371, to {0, 2, 3, 6} : A047285, to {0, 2, 3} : A047359,
to {0, 2, 4, 5, 6} : A047316, to {0, 2, 4, 5} : A047379, to {0, 2, 4, 6} : A047293, to {0, 2, 4} : A047349, to {0, 2, 5, 6} : A047324, to {0, 2, 5} : A047386, to {0, 2, 6} : A047277, to {0, 2} : A047352,
to {0, 3, 4, 5, 6} : A047308, to {0, 3, 4, 5} : A047365, to {0, 3, 4, 6} : A047297, to {0, 3, 4} : A047342, to {0, 3, 5, 6} : A047328, to {0, 3, 5} : A047390, to {0, 3, 6} : A047281, to {0, 3} : A047355, to {0, 4, 5, 6} : A047312, to {0, 4, 5} : A047375, to {0, 4, 6} : A047289, to {0, 4} : A047345, to {0, 5, 6} : A047320, to {0, 5} : A047382, to {0, 6} : A047335,
to {1, 2, 3, 4, 5, 6} : A047304, to {1, 2, 3, 4, 5} : A047369, to {1, 2, 3, 4, 6} : A047302, to {1, 2, 3, 4} : A047338, to {1, 2, 3, 5, 6} : A032796, to {1, 2, 3, 5} : A047372, to {1, 2, 3, 6} : A047286, to {1, 2, 3} : A047360, to {1, 2, 4, 5, 6} : A047317, to {1, 2, 4, 5} : A047380, to {1, 2, 4, 6} : A047294, to {1, 2, 4} : A047350, to {1, 2, 5, 6} : A047325, to {1, 2, 5} : A047387, to {1, 2, 6} : A047278, to {1, 2} : A047353,
to {1, 3, 4, 5, 6} : A047309, to {1, 3, 4, 5} : A047366, to {1, 3, 4, 6} : A047298, to {1, 3, 4} : A047343, to {1, 3, 5, 6} : A047329, to {1, 3, 5} : A047391, to {1, 3, 6} : A047282, to {1, 3} : A047356, to {1, 4, 5, 6} : A047313, to {1, 4, 5} : A047376, to {1, 4, 6} : A047290, to {1, 4} : A047346, to {1, 5, 6} : A047321, to {1, 5} : A047383, to {1, 6} : A047336,
to {2, 3, 4, 5, 6} : A047305, to {2, 3, 4, 5} : A047362, to {2, 3, 4, 6} : A047300, to {2, 3, 4} : A047339, to {2, 3, 5, 6} : A047331, to {2, 3, 5} : A047370, to {2, 3, 6} : A047284, to {2, 3} : A047358, to {2, 4, 5, 6} : A047315, to {2, 4, 5} : A047378, to {2, 4, 6} : A047292, to {2, 4} : A047348, to {2, 5, 6} : A047323, to {2, 5} : A047385, to {2, 6} : A047276,
to {3, 4, 5, 6} : A047307, to {3, 4, 5} : A047364, to {3, 4, 6} : A047296, to {3, 4} : A047341, to {3, 5, 6} : A047327, to {3, 5} : A047389, to {3, 6} : A047280, to {4, 5, 6} : A047311, to {4, 5} : A047374, to {4, 6} : A047288, to {5, 6} : A047319.

congruent mod 8 :

to 0 (not) : A047592, to 0 : A008590, to 1 (not) : A047594, to 1 : A017077, to 2 (not) : A047565, to 2 : A017089, to 3 (not) : A047573, to 3 : A017101, to 4 (not) : A047588, to 4 : A017113, to 5 (not) : A004776, to 5 : A004770, to 6 (not) : A047595, to 6 : A017137, to 7 (not) : A004777, to 7 : A004771;
to {0, 1, 2, 3, 4, 5, 6} : A004777, to {0, 1, 2, 3, 4, 5, 7} : A047595, to {0, 1, 2, 3, 4, 5} : A047602, to {0, 1, 2, 3, 4, 6, 7} : A004776, to {0, 1, 2, 3, 4, 6} : A047420, to {0, 1, 2, 3, 4, 7} : A047549, to {0, 1, 2, 3, 4} : A047453, to {0, 1, 2, 3, 5, 6, 7} : A047588, to {0, 1, 2, 3, 5, 6} : A047450, to {0, 1, 2, 3, 5, 7} : A047490, to {0, 1, 2, 3, 5} : A047607, to {0, 1, 2, 3, 6, 7} : A047505, to {0, 1, 2, 3, 6} : A047405, to {0, 1, 2, 3, 7} : A047534, to {0, 1, 2, 3} : A047476,
to {0, 1, 2, 4, 5, 6, 7} : A047573, to {0, 1, 2, 4, 5, 7} : A047498, to {0, 1, 2, 4, 5} : A047614, to {0, 1, 2, 4, 6, 7} : A047513, to {0, 1, 2, 4, 6} : A047412, to {0, 1, 2, 4, 7} : A047542, to {0, 1, 2, 4} : A047466, to {0, 1, 2, 5, 6, 7} : A047581, to {0, 1, 2, 5, 6} : A047442, to {0, 1, 2, 5, 7} : A047483, to {0, 1, 2, 5} : A047620, to {0, 1, 2, 6, 7} : A047555, to {0, 1, 2, 6} : A047397, to {0, 1, 2, 7} : A047527, to {0, 1, 2} : A047469,
to {0, 1, 3, 4, 5, 6, 7} : A047565, to {0, 1, 3, 4, 5, 6} : A047428, to {0, 1, 3, 4, 5} : A047601, to {0, 1, 3, 4, 6, 7} : A047517, to {0, 1, 3, 4, 6} : A047416, to {0, 1, 3, 4, 7} : A047545, to {0, 1, 3, 4} : A047460, to {0, 1, 3, 5, 6, 7} : A047585, to {0, 1, 3, 5, 6} : A047446, to {0, 1, 3, 5, 7} : A047486, to {0, 1, 3, 5} : A047624, to {0, 1, 3, 6, 7} : A047559, to {0, 1, 3, 6} : A047401, to {0, 1, 3, 7} : A047530, to {0, 1, 3} : A047472,
to {0, 1, 4, 5, 6, 7} : A047569, to {0, 1, 4, 5, 6} : A047432, to {0, 1, 4, 5, 7} : A047494, to {0, 1, 4, 6, 7} : A047509, to {0, 1, 4, 6} : A047409, to {0, 1, 4, 7} : A047538, to {0, 1, 4} : A047462, to {0, 1, 5, 6, 7} : A047577, to {0, 1, 5, 6} : A047439, to {0, 1, 5, 7} : A047479, to {0, 1, 5} : A047616, to {0, 1, 6, 7} : A047551, to {0, 1, 6} : A047394, to {0, 1, 7} : A047523, to {0, 1} : A047393,
to {0, 2, 3, 4, 5, 6, 7} : A047594, to {0, 2, 3, 4, 5, 6} : A047424, to {0, 2, 3, 4, 5, 7} : A047503, to {0, 2, 3, 4, 5} : A047597, to {0, 2, 3, 4, 6} : A047418, to {0, 2, 3, 4, 7} : A047547, to {0, 2, 3, 4} : A047456, to {0, 2, 3, 5, 6, 7} : A047587, to {0, 2, 3, 5, 6} : A047448, to {0, 2, 3, 5, 7} : A047488, to {0, 2, 3, 5} : A047605, to {0, 2, 3, 6, 7} : A047560, to {0, 2, 3, 6} : A047403, to {0, 2, 3, 7} : A047532, to {0, 2, 3} : A047474,
to {0, 2, 4, 5, 6, 7} : A047571, to {0, 2, 4, 5, 6} : A047434, to {0, 2, 4, 5, 7} : A047496, to {0, 2, 4, 5} : A047612, to {0, 2, 4, 6, 7} : A047511, to {0, 2, 4, 7} : A047540, to {0, 2, 4} : A047464, to {0, 2, 5, 6, 7} : A047579, to {0, 2, 5, 6} : A047441, to {0, 2, 5, 7} : A047481, to {0, 2, 5} : A047618, to {0, 2, 6, 7} : A047553, to {0, 2, 6} : A047395, to {0, 2, 7} : A047525, to {0, 2} : A047467,
to {0, 3, 4, 5, 6, 7} : A047563, to {0, 3, 4, 5, 6} : A047426, to {0, 3, 4, 5, 7} : A047500, to {0, 3, 4, 5} : A047599, to {0, 3, 4, 6, 7} : A047515, to {0, 3, 4, 6} : A047414, to {0, 3, 4} : A047458, to {0, 3, 5, 6, 7} : A047583, to {0, 3, 5, 6} : A047444, to {0, 3, 5} : A047622, to {0, 3, 6, 7} : A047557, to {0, 3, 6} : A047399, to {0, 3, 7} : A047528, to {0, 3} : A047470,
to {0, 4, 5, 6, 7} : A047567, to {0, 4, 5, 6} : A047430, to {0, 4, 5, 7} : A047492, to {0, 4, 5} : A047609, to {0, 4, 6, 7} : A047507, to {0, 4, 6} : A047407, to {0, 4, 7} : A047536, to {0, 5, 6, 7} : A047575, to {0, 5, 6} : A047437, to {0, 5, 7} : A047477, to {0, 5} : A047615, to {0, 6, 7} : A047590, to {0, 6} : A047451, to {0, 7} : A047521,
to {1, 2, 3, 4, 5, 6, 7} : A047592, to {1, 2, 3, 4, 5, 6} : A047422, to {1, 2, 3, 4, 5, 7} : A047504, to {1, 2, 3, 4, 5} : A047603, to {1, 2, 3, 4, 6, 7} : A047519, to {1, 2, 3, 4, 6} : A047419, to {1, 2, 3, 4, 7} : A047449, to {1, 2, 3, 4, 7} : A047548, to {1, 2, 3, 4} : A047454, to {1, 2, 3, 5, 7} : A047489, to {1, 2, 3, 5} : A047606, to {1, 2, 3, 6, 7} : A047561, to {1, 2, 3, 6} : A047404, to {1, 2, 3, 7} : A047533, to {1, 2, 3} : A047475,
to {1, 2, 4, 5, 6, 7} : A047572, to {1, 2, 4, 5, 6} : A047435, to {1, 2, 4, 5, 7} : A047497, to {1, 2, 4, 5} : A047613, to {1, 2, 4, 6, 7} : A047512, to {1, 2, 4, 6} : A047411, to {1, 2, 4, 7} : A047541, to {1, 2, 4} : A047465, to {1, 2, 5, 6, 7} : A047580, to {1, 2, 5, 7} : A047482, to {1, 2, 5} : A047619, to {1, 2, 6, 7} : A047554, to {1, 2, 6} : A047396, to {1, 2, 7} : A047526, to {1, 2} : A047468,
to {1, 3, 4, 5, 6, 7} : A047564, to {1, 3, 4, 5, 6} : A047427, to {1, 3, 4, 5, 7} : A047501, to {1, 3, 4, 5} : A047600, to {1, 3, 4, 6, 7} : A047516, to {1, 3, 4, 6} : A047415, to {1, 3, 4, 7} : A047544, to {1, 3, 4} : A047459, to {1, 3, 5, 6, 7} : A047584, to {1, 3, 5, 6} : A047445, to {1, 3, 5} : A047623, to {1, 3, 6, 7} : A047558, to {1, 3, 6} : A047400, to {1, 3, 7} : A047529, to {1, 3} : A047471,
to {1, 4, 5, 6, 7} : A047568, to {1, 4, 5, 6} : A047431, to {1, 4, 5, 7} : A047493, to {1, 4, 5} : A047610, to {1, 4, 6, 7} : A047508, to {1, 4, 6} : A047408, to {1, 4, 7} : A047537, to {1, 4} : A047461,
to {1, 5, 6, 7} : A047576, to {1, 5, 6} : A047438, to {1, 5, 7} : A047478, to {1, 6, 7} : A047591, to {1, 6} : A047452, to {1, 7} : A047522,
to {2, 3, 4, 5, 6, 7} : A047593, to {2, 3, 4, 5, 6} : A047423, to {2, 3, 4, 5, 7} : A047502, to {2, 3, 4, 5} : A047596, to {2, 3, 4, 6, 7} : A047518, to {2, 3, 4, 6} : A047417, to {2, 3, 4, 7} : A047546, to {2, 3, 4} : A047455,
to {2, 3, 5, 6, 7} : A047586, to {2, 3, 5, 6} : A047447, to {2, 3, 5, 7} : A047487, to {2, 3, 5} : A047604, to {2, 3, 6} : A047402, to {2, 3, 7} : A047531, to {2, 3} : A047473,
to {2, 4, 5, 6, 7} : A047570, to {2, 4, 5, 6} : A047433, to {2, 4, 5, 7} : A047495, to {2, 4, 5} : A047611, to {2, 4, 6, 7} : A047510, to {2, 4, 6} : A047410, to {2, 4, 7} : A047539, to {2, 4} : A047463,: to {2, 5, 6, 7} : A047578, to {2, 5, 6} : A047440, to {2, 5, 7} : A047480, to {2, 5} : A047617, to {2, 6, 7} : A047552, to {2, 7} : A047524,
to {3, 4, 5, 6, 7} : A047562, to {3, 4, 5, 6} : A047425, to {3, 4, 5, 7} : A047499, to {3, 4, 5} : A047598, to {3, 4, 6, 7} : A047514, to {3, 4, 6} : A047413, to {3, 4, 7} : A047543, to {3, 4} : A047457, to {3, 5, 6, 7} : A047582, to {3, 5, 6} : A047443, to {3, 5, 7} : A047484, to {3, 5} : A047621, to {3, 6, 7} : A047556, to {3, 6} : A047398,
to {4, 5, 6, 7} : A047566, to {4, 5, 6} : A047429, to {4, 5, 7} : A047491, to {4, 5} : A047608, to {4, 6, 7} : A047506, to {4, 6} : A047406, to {4, 7} : A047535,
to {5, 6, 7} : A047574, to {5, 6} : A047436, to {5, 7} : A047550, to {6, 7} : A047589.

congruent mod 9:

to 0 (not) : A168183, to 0 : A008591, to 1 : A017173, to 2 : A017185, to 3 : A017197, to 4 : A017209, to 5 : A017221, to 6 : A017233, to 7 : A017245, to 8 : A017257,
to {0, 1, 2, 3, 6, 7, 8} : A060464, to {0, 1} : A090570, to {0, 2, 5, 8} : A174438, to {1, 4, 5, 8} : A174396, to {1, 8} : A056020, to {2, 4, 5, 7} : A056527, to {2, 7} : A063289, to {3, 6} : A016051, to {4, 5} : A156638, to {4, 7} : A125758.

congruent numbers: A003273*, A006991, A016090

congruent products between domains N and GF(2)[X] , sequences defined by  :
congruent products between domains N and GF(2)[X], Here * stands for ordinary multiplication (A004247), and X means carryless GF(2)[X] multiplication (A048720))
congruent products between domains N and GF(2)[X], 3*n = 3Xn (A003714), 3*n = 7Xn (A048717), 3*n = 7Xn and 5*n = 5Xn (A048719)
congruent products between domains N and GF(2)[X], 5*n = 5Xn (A048716), 7*n = 7Xn (A048715), 7*n = 11Xn (A115770)
congruent products between domains N and GF(2)[X], 9*n = 9Xn (A115845), 9*n = 25Xn (A115801), 9*n = 25Xn, but 17*n is not 49Xn (A115811)
congruent products between domains N and GF(2)[X], 11*n = 31Xn (A115803), 13*n = 21Xn (A115772), 13*n = 29Xn (A115805)
congruent products between domains N and GF(2)[X], 15*n = 15Xn (A048718), 15*n = 23Xn (A115774), 15*n = 27Xn (A115807)
congruent products between domains N and GF(2)[X], 17*n = 17Xn (A115847), 17*n = 49Xn (A115809), 19*n = 55Xn (A115874)
congruent products between domains N and GF(2)[X], 21*n = 21Xn (A115422), 31*n = 31Xn (A115423), 33*n = 33Xn (A114086)
congruent products between domains N and GF(2)[X], 41*n = 105Xn (A115876), 49*n = 81Xn (A114384), 57*n = 73Xn (A114386)
congruent products between domains N and GF(2)[X], 63*n = 63Xn (A115424)
congruent products between domains N and GF(2)[X], array of solutions for n*k = A065621(n) X k: A115872
congruent products between domains N and GF(2)[X], see also A115857, A115871
congruent products between domains N and GF(2)[X]: see also congruent products under XOR

congruent products under XOR , sequences defined by  :
congruent products under XOR, 3*n = 2*n XOR n (A003714), 5*n = 4*n XOR n (A048716), 5*n = 3*n XOR 2*n (A115767)
congruent products under XOR, 7*n = 6*n XOR n (A048715), 7*n = 5*n XOR 2*n (A115813), 7*n = 4*n XOR 3*n (A048715)
congruent products under XOR, 11*n = 10*n XOR n (A115793), 11*n = 9*n XOR 2*n (A115795), 11*n = 8*n XOR 3*n (A115797)
congruent products under XOR, 11*n = 7*n XOR 4*n (A115799), 11*n = 6*n XOR 5*n (A115827), 15*n = 14*n XOR n (A048718)
congruent products under XOR, 17*n = 16*n XOR n (A115847), 17*n = 13*n XOR 4*n (A115817), 19*n = 15*n XOR 4*n (A115819)
congruent products under XOR, 21*n = 20*n XOR n (A115422), 21*n = 15*n XOR 6*n (A115821), 21*n = 11*n XOR 10*n (A115829)
congruent products under XOR, 23*n = 13*n XOR 8*n (A115823), 25*n = 16*n XOR 9*n (A115831), 33*n = 17*n XOR 16*n (A115833)
congruent products under XOR, 31*n = 30*n XOR n (A115423), 33*n = 32*n XOR n (A114086), 63*n = 62*n XOR n (A115424)
congruent products under XOR, 9*n = 8*n XOR n (A115845), 9*n = 7*n XOR 2*n (A115815)
congruent products under XOR, least k such that n XOR n*2^k = n*(2^k + 1), A116361
congruent products under XOR: see also congruent products between domains N and GF(2)[X]

conjecture, sequences related to various conjectures :
conjecture, curling number: A094004
conjectured formulas: see A005158, A005160, A005162, A005163, A005164 (there are conjectured formulas for these sequences which may still be open problems)
conjectured sequences (00): The following sequences contain one or more terms that are only conjectured values
conjectured sequences (01): In some cases the conjectured terms are only mentioned in the comments
conjectured sequences (02): This list was last revised Jun 19 2008. It is surely incomplete, and by the time you look at them their status may have changed
conjectured sequences (03): Suggestions for additions to or deletions from this list will be welcomed - njasloane@gmail.com
conjectured sequences (04): A008892, A098007, A063769 and other sequences related to the "aliquot divisors" problem
conjectured sequences (05): A065083, A090315, A104885, A121091, A051346, A115016
conjectured sequences (06): A075788, A075789, A075790, A075791, A083435, A086548, A087318, A087319, A088126, A090315, A092959
conjectured sequences (07): A000373, A002149, A014595, A014596, A019450, A019459, A020999,
conjectured sequences (08): A022495-A022498, A023054, A023108, A038552, A046125, A052131,
conjectured sequences (09): A066426, A066435, A066450, A066510, A066746, A066817, A067579,
conjectured sequences (10): A068591, A071071, A071887, A072023, A072326, A072540, A074980,
conjectured sequences (11): A074981, A078693, A078754, A078869, A079098, A079398, A079611,
conjectured sequences (12): A080131, A080133, A080134, A080761, A080762, A085508, A086058,
conjectured sequences (13): A086748, A087092, A088910, A091305, A092372-A092382, A096340,
conjectured sequences (14): A098860, A099118, A099119, A105233, A105600, A105601, A108795,
conjectured sequences (15): A110000, A110108, A110172, A110222, A110223, A110312, A110356,
conjectured sequences (16): A112647, A112799, A112826, A118278-A118285, A120414*, A121069,
conjectured sequences (17): A121346, A121507, A121508, A119479, A009287, A090997, A090987,
conjectured sequences (18): A004137, A048873, A056287, A059813, A059817, A059818, A065106, A065107, A081082, A084619, A090659, A099260, A117342,
conjectured sequences (19): A000954, A000974, A007008 (?), A023189-A023193, A036462-A036463, A037018, A039508, A039515, A051522, A056636, A076853, A105170, A118371
conjectured sequences (20): A080803, A124484, A093486, A140394, A007323, A027687, A046060, A046061
conjectures: see also Artin's conjecture
conjectures: see also Catalan's conjecture
conjectures: see also Chvatal conjecture
conjectures: see also complete graph conjecture
conjectures: see also curling number conjecture
conjectures: see also Gilbreath's conjecture
conjectures: see also Goldbach conjecture
conjectures: see also Heawood conjecture
conjectures: see also Kummer's conjecture
conjectures: see also Legendre's conjecture
conjectures: see also Mertens's conjecture
conjectures: see also permutations of the integers, conjectured
conjectures: see also Polya's conjecture
conjectures: see also sequences that need extending

conjugacy classes of groups: see groups, conjugacy classes
Conn, Herb, sums involving 1/binomial(2n,n): A098830+A181334+A185585, A014307+A180875, A181374+A185672
connect the dots: A187679
connected graphs, see graphs, connected
connected regular graphs, see graphs, regular connected
connecting 2n points: A006605
Connell sequence: A001614*
Consecutive:: A002308, A001223, A007610, A002307, A007513, A000236, A007667, A006889, A001033, A006055
Consistent:: A005779, A001225

constants, sequences related to :

constant primes (= primes of the form floor(const*10^k)):

A005042 (π = Pi), A007512 (e = exp(1)), A072952 (gamma), A064117 (golden ratio Phi), A115453 (sqrt(2)), A119343 (sqrt(3)), A118329 (Catalan's constant), A119333 (Apéry's constant zeta(3)), A176942 (Champernowne constant), A118419 (Glaisher-Kinkelin constant), A122422 (Soldner's constant), A174975 (Golomb-Dickman constant lambda), A210704 (3^(1/3)), A227529 (Copeland-Erdős constant), A228241 (ln(10)).

constants, decimal expansion of: e A001113, gamma A001620, golden ratio A001622, pi A000796, silver mean A014176
constants, Robbins constant: A073012
constant sequences: see recurrence, linear, order 01, (1)
constructing numbers from other numbers and the operations of addition, subtraction, etc: see under four 4's problem
contexts: A047684
CONTINUANT transform: see Transforms file
continuant: A072347

continued cotangents, sequences related to :
continued cotangents:: A002668, A006266, A006268, A002667, A006267, A002666, A006269

continued fractions , sequences related to :
continued fractions (1):: A003285, A006466, A002951, A003417, A002852, A002211, A006083, A006839, A002947, A002948
continued fractions (2):: A002946, A001685, A001686, A004200, A002665, A006271, A001684, A006085, A002945, A007515
continued fractions (3):: A002937, A001112, A006464, A003118, A001203, A006273, A006270, A002949, A006467, A003117
continued fractions (4):: A006221, A002950, A001204, A006084, A005483, A006518, A005147, A006272, A006274, A005146, A006465
continued fractions for constants: (2/Pi)*Integral(sin(x)/x, x=0..Pi) (A036791), 0.12112111211112... A042974 (A056030) Product_{k>=1} (1-1/2^k) (A048652)
continued fractions for constants: 2^(1/2) etc.: see below under: continued fractions for constants: square roots of 2, etc.
continued fractions for constants: 2^(1/3) (A002945), 3^(1/3) (A002946), 4^(1/3) (A002947), 5^(1/3) (A002948), 6^(1/3) (A002949), 7^(1/3) (A005483), cube root of non-cubes 9+n to 100 (A010239, A010240, etc)
continued fractions for constants: 2^(1/3)+sqrt(3) (A039923), BesselK(1,2)/BesselK(0,2) (A051149), Catalan's constant (A014538)
continued fractions for constants: 2^(1/5) (A002950), 3^(1/5) (A003117), 4^(1/5) (A003118), 5^(1/5) (A002951)
continued fractions for constants: Champernowne (A030167), Conway's (A014967), Copeland-Erdos (A030168), Euler's gamma (A002852)
continued fractions for constants: e (A003417), e/2 (A006083), e/3 (A006084), e/4 (A006085), e^2 (A001204), e^3 (A058282)
continued fractions for constants: e^Pi (A058287), e^pi - pi (A018939), (e+1)/3 (A028360), (e-1)/(e+1) (A016825), i^i = exp(-Pi/2) (A049007)
continued fractions for constants: Fransen-Robinson (A046943), GAMMA(1/3) (A030651), GAMMA(2/3) (A030652), Integral(sin(x)/x, x=0..Pi) (A036790)
continued fractions for constants: golden ratio (A000012)
continued fractions for constants: Khintchine's (A002211), LambertW(1) (A030179), Lehmer's (A002665), Liouville's A012245 (A058304), Niven's (A033151)
continued fractions for constants: ln(2+n) to ln(100) (A016730+n), ln((2n+1)/2) to ln(99/2) (A016528+n)
continued fractions for constants: M(1,sqrt(2)) (A053003), 1 / M(1,sqrt(2)) (A053002), 1 +1/(e +1/(e^2 +..)) (A055972), 2*cos(2*Pi/7) (A039921)
continued fractions for constants: Otter's rooted tree A000081 (A051492), Thue-Morse (A014572), Tribonacci constant (A019712, A058296)
continued fractions for constants: Pi (A001203), 2 Pi (A058291), Pi/2 (A053300), Pi^2 (A058284), Pi^e (A058288), pi+e (A058651)
continued fractions for constants: sqrt(2Pi) (A058293), sqrt(Pi) (A058280), sqrt(e) (A058281)
continued fractions for constants: sqrt(3) - 1: A134451, A048878/A002530
continued fractions for constants: sqrt(3): A040001, A002531/A002530
continued fractions for constants: square roots of 17 (A040012), 18 (A040013), 19 (A010124), 20 (A040015), 21 (A010125), 22 (A010126), 23 (A010127), 24 (A040019), 26 (A040020), 27 (A040021), 28 (A040022), 29 (A010128),
continued fractions for constants: square roots of 2 (A040000 and A001333/A000129), 3 (A040001), 5 (A040002), 6 (A040003), 7 (A010121), 8 (A040005), 10 (A040006), 11 (A040007), 12 (A040008), 13 (A010122), 14 (A010123), 15 (A040011),
continued fractions for constants: square roots of 30 (A040024), 31 (A010129), 32 (A010130), 33 (A010131), 34 (A010132), 35 (A040029), 37 (A040030), 38 (A040031), 39 (A040032), 40 (A040033), 41 (A010133), 42 (A040035),
continued fractions for constants: square roots of 43 (A010134), 44 (A040037), 45 (A010135), 46 (A010136), 47 (A010137), 48 (A040041), 50 (A040042), 51 (A040043), 52 (A010138), 53 (A010139), 54 (A010140), 55 (A010141),
continued fractions for constants: square roots of 56 (A040048), 57 (A010142), 58 (A010143), 59 (A010144), 60 (A040052), 61 (A010145), 62 (A010146), 63 (A040055), 65 (A040056), 66 (A040057), 67 (A010147), 68 (A040059),
continued fractions for constants: square roots of 69 (A010148), 70 (A010149), 71 (A010150), 72 (A040063), 73 (A010151), 74 (A010152), 75 (A010153), 76 (A010154), 77 (A010155), 78 (A010156), 79 (A010157), 80 (A040071),
continued fractions for constants: square roots of 82 (A040072), 83 (A040073), 84 (A040074), 85 (A010158), 86 (A010159), 87 (A040077), 88 (A010160), 89 (A010161), 90 (A040080), 91 (A010162), 92 (A010163), 93 (A010164),
continued fractions for constants: square roots of 94 (A010165), 95 (A010166), 96 (A010167), 97 (A010168), 98 (A010169), 99 (A010170), etc. (square roots of numbers bigger than 100 have been omitted)
continued fractions for constants: Sum_{n>=0} 1/2^(2^n) (A007400), Sum_{k>=2} 2^(-Fibonacci(k)) (A006518), Sum_{m>=0} 1/(2^2^m - 1) (A048650)
continued fractions for constants: tan(1) (A009001), tan(1/n) n=2 to 10 (A019423+n)
continued fractions for constants: Trott's (A039663), Wallis' number (A058297), Wirsing's (A007515), prime constant (A051007), root of x^5-x-1 (A039922)
continued fractions for constants: zeta(2) = Pi^2/6 (A013679), zeta(3) (A013631), zeta(4) (A013680)
continued fractions, for sqrt(n), length of period: A003285*, A097853

contours: A006021
convenient numbers: A000926
conventions in OEIS: see spelling and notation

convergents , sequences related to :
convergents (1):: A002363, A007676, A002356, A005663, A006279, A002355, A005664, A002358, A002795, A002353, A002360, A007509, A005484, A002364
convergents (2):: A007677, A002351, A002357, A002354, A002794, A001517, A002485, A002352, A002359, A002361, A005668, A002362, A002119, A002486, A005485

convert from base 10 to base n (or vice versa): A006937 A023372 A023378 A023383 A023387 A023390 A008557 A023392 A010692
convert from decimal to binary: A006937, A006938
convex lattice polygons: A063984, A070911, A089187

convolution , sequences related to :
convolution of natural numbers :: A007466
convolution of triangular numbers :: A007465
Convolutional codes:: A007223, A007224, A007225, A007227, A007226, A007228, A007229
Convolutions:: A007477, A006013, A001938, A000385, A005798, A007556
Convolved Fibonacci numbers:: A001629, A001628, A001872, A001873, A001874, A001875

Conway , sequences related to :
Conway group Con.0: A008924
Conway sequences:: A007012, A004001, A005940, A005941, A003681, A007542, A007471, A003634, A007547, A003635
Conway, sequences made famous by: A004001*, A005150*
Conway-Guy rapidly growing sequence: A046859
Conway-Guy sequence: A005318*, A006755, A006368*, A006754, A006756, A006757

coordination sequences, sequences related to :
coordination sequences: for A_n root lattices: A005901, A008383, A008385, A008387, A008389, A008391, A008393, A008395, and A035837 through A035876
coordination sequences: for B_n root lattices: A022144 through A022154, A107546 through A107571, and A108000 through A108011
coordination sequences: for C_n root lattices: A010006, A019560 through A019564, and A035746 through A035787
coordination sequences: for D_n root lattices: A005901, A007900, A008355, A008357, A008359, A008361, A008376, A008378, and A107506 through A107545
coordination sequences: see also crystal ball sequences
coordination sequences: see also under names of individual lattices

Coprime sequences:: A003139, A003140, A002716, A002715


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools