This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Su

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Su


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


subfactorial numbers: A000166*
subgroups of a group, see: groups, maximal number of subgroups in
sublattices , sequences related to :

sublattices of given index in generic d-dimensional lattices: A000203 A001615 A001001 A060983 A038991 A038992 A038993 A038994 A038995 A038996 A038997 A038998 A038999
sublattices of given index in various lattices: A003051, A003050, A054345, A054346, A054384
sublattices, similar: Z^2: A000161, A002654; Z^4: A035292; D_4: A045771

sublime numbers: A081357*. A145769
Subsequences of [1 ... n]:: A007481, A007484, A007455, A007482, A007483
subset sums , sequences related to :

subset sums modulo m, sequences related to: A000016, A000048, A053633, A063776, A064355, A068009, A061857, A061865
distinct subset sums: A201052

subtract if you can else add: see Recaman's sequence
subtract-a-prime: A014589*
subtract-a-square: A014586*
subway stops, sequences related to :

subway stops: A000053 A000054 A001049 A007826 A011554 A208359, A208360
subway stops, erroneous versions: A003694 A051419 A100508

subwords: A005943 A006697 A050186 A050430 A050431 A050432 A050433 A051168
Such sequence: see Perrin sequence A001608
sudokus: A107739, A109741
suitable numbers: A000926*
sum of digits , sequences related to :

sum of digits in powers of m: A001370 (2^n), A004166 (3^n), A065713 (4^n), A066001(5^n), A066002 (6^n), A066003(7^n), A066004 (8^n), A065999 (9^n), A066005 (11^n), A066006 (12^n)
sum of digits of k^n mod n: (k=2) A000079, A001370, A175434, A175169; (k=3) A000244, A004166, A175435, A067862; (k=5) A000351, A066001, A175456; (k=6) A000400, A066002, A175457, A067864; (k=7) A000420, A066003, A175512, A067863; (k=8) A062933; (k=13) A001022, A175527, A175528, A175525; (k=21) A175589; (k=167) A175558, A175559, A175560, A175552
sum of digits, n times: A057147, A003634, A005349, A037478, A052489, A052490, A052491
sum of digits, see also: A003132, A006287, A007471
sum of digits: see also Columbian or self numbers
sum of digits: 1's-counting sequence: number of 1's in binary expansion of n: A000120
sum of digits: A007953*, A010888* (digital root)
sum of digits: digital sum (i.e. sum of digits) of n.: A007953
sum of digits: sum of digits in bases b=10,3,4,...,9 (mod b): A053837-A053844
sum of digits: sum of digits of (n written in base 3).: A053735
sum of digits: sum of digits of (n written in base 4).: A053737
sum of digits: sum of digits of n written in base 5.: A053824
sum of digits: sum of digits of n written in base 6.: A053827
sum of digits: sum of digits of n written in base 7.: A053828
sum of digits: sum of digits of n written in base 8.: A053829
sum of digits: sum of digits of n written in base 9.: A053830
sum of digits: sum of digits of n written in bases 11-16.: A053831-A053836

sum of first n squares equals a triangular number: A053611*, A039596, A053612, A136276
sum of primes <= x: A034387
sum-free subsets: A007865, A085489
sum-free subsets: see also A093970 A093971
sum-full subsets: A093970 A093971
Sum: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
sum: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
summarize previous term: A005151*
Summation: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
summation: the style used for sums in the OEIS is illustrated by: Sum_{ k = 2..infinity } 1/k^3
sums of divisors, sequences related to :

sums of divisors: see also sigma(n)
sums of divisors:: A005100, A002093, A007497, A002192, A007503, A007369, A001065, A007370, A000203*, A006872, A006532, A000593, A003624, A001157, A005835, A007594, A007691, A001158, A007371, A007368, A007365, A001159, A007592, A007593, A007372, A007373, A001160

sums of k cubes, number of ways of writing as: for k=1..9: A010057, A173677, A051343, A173678, A173679, A173680, A173676, A173681, A173682
sums of numbers k at a time determine the numbers?: A057716, A074894*
Sums of powers:: A005792, A001481, A000537, A000538, A000539, A000540, A002309, A000541, A002594, A000542, A003294, A007487
sums of squares , sequences related to :

sums of squares needed to represent n: A002828*, A151925
sums of squares, sequences related to (01): A000118 A000132 A000141 A000143 A000144 A000145 A000152 A000156 A000404 A000408 A000414 A000415
sums of squares, sequences related to (02): A000419 A000437 A000443 A000446 A000448 A000451 A000534 A000548 A000549 A000925 A001032 A001422
sums of squares, sequences related to (03): A001481 A001944 A001948 A001974 A001983 A001995 A002654 A003995 A003996 A004018 A004144 A004195
sums of squares, sequences related to (04): A004196 A004214 A004215 A004431 A004432 A004433 A004434 A004435 A004436 A004437 A004438 A004439
sums of squares, sequences related to (05): A004440 A004441 A005792 A005875 A006431 A006456 A007475 A007667 A007692 A008451 A008452
sums of squares, sequences related to (06): A008453 A009000 A009003 A014110 A016032 A018820 A018821 A018822 A018823 A018824 A018825 A020893
sums of squares, sequences related to (07): A022544 A022551 A022552 A024507 A024508 A024509 A024795 A024803 A024804 A025284 A025285 A025286
sums of squares, sequences related to (08): A025287 A025288 A025289 A025290 A025291 A025292 A025293 A025294 A025295 A025296 A025297 A025298
sums of squares, sequences related to (09): A025299 A025300 A025301 A025302 A025303 A025304 A025305 A025306 A025307 A025308 A025309 A025310
sums of squares, sequences related to (10): A025311 A025312 A025313 A025314 A025315 A025316 A025317 A025318 A025319 A025320 A025321 A025322
sums of squares, sequences related to (11): A025323 A025324 A025325 A025326 A025327 A025328 A025329 A025330 A025331 A025332 A025333 A025334
sums of squares, sequences related to (12): A025335 A025336 A025337 A025338 A025339 A025340 A025341 A025342 A025343 A025344 A025345 A025346
sums of squares, sequences related to (13): A025347 A025348 A025349 A025350 A025351 A025352 A025353 A025354 A025355 A025356 A025357 A025358
sums of squares, sequences related to (14): A025359 A025360 A025361 A025362 A025363 A025364 A025365 A025366 A025367 A025368 A025369 A025370
sums of squares, sequences related to (15): A025371 A025372 A025373 A025374 A025375 A025376 A025377 A025378 A025379 A025380 A025381 A025382
sums of squares, sequences related to (16): A025383 A025384 A025385 A025386 A025387 A025388 A025389 A025390 A025391 A025392 A025393 A025394
sums of squares, sequences related to (17): A025414 A025415 A025416 A025417 A028237 A034705 A045698 A045702 A046711 A046712 A047700 A047701
sums of squares, sequences related to (18): A048250 A048261 A048395 A048610 A050795 A050796 A050797 A050798 A050802 A050803 A050804 A051952
sums of squares, sequences related to (19): A052199 A052261 A054321 A000161 A000603 A005653 A047808

sums of squares and sums of cubes , sequences related to :
sums of 16 squares, number of ways of writing as: A000152*
sums of 2 cubes (1): A003325*, A004999*: not: A022555; A024670 (a^3+b^3, a>b>0), A135998
sums of 2 cubes (2): A086119, A03325, A052276, A120398, A046894
sums of 2 squares, number of ways of writing as: A000161*, A002654*, A004018*
sums of 2 squares, see also under entries for: x^2+y^2 <= n
sums of 2 squares: A001481*, A000404*, A000415*, A002313* (primes), A022544 (not)
sums of 24 squares, number of ways of writing as: A000156*
sums of 3 cubes: A004825*, A003072*, A024981*, A047702*, A025395, A047702*; not: A022561
sums of 3 or fewer squares: A000290, A000404, A063725, A000408, A063691, A005767, A169580, A000378, A001481
sums of 3 squares, allowing zeros: A000378 (the numbers), A005875 (number of ways)
sums of 3 squares, number of ways of writing as: A005875*, A074590 (primitive solutions), A025427 (using nonzero squares)
sums of 3 squares: A000378*, A000419*, A004215* (not), A005767, A169580
sums of 3 squares: see also A047809
sums of 4 cubes: A004826; not: A022566
sums of 4 squares, number of ways of writing as: A000118*, A025428 (using nonzero squares)
sums of 4 squares: A004215*
sums of 4th powers needed to represent n: A002377*
sums of 5 cubes: A004827; not: A069136
sums of 5 squares, number of ways of writing as: A000132*, A025429 (using nonzero squares), A080654 and A080673 (smallest and largest index with given A025429)
sums of 6 cubes: A004828, A046040; not: A069137
sums of 6 squares, number of ways of writing as: A000141*, A025430 (using nonzero squares)
sums of 7 cubes, number of ways of writing as: A173676*
sums of 7 cubes: A004829, A018890; not: A018888
sums of 7 squares, number of ways of writing as: A008451*, A025431 (using nonzero squares)
sums of 8 cubes: A018889
sums of 8 or 9 cubes: A018888
sums of 8 squares, number of ways of writing as: A000143*, A025432 (using nonzero squares)
sums of 9 squares, number of ways of writing as: A008452*
sums of consecutives squares give squares: A001032, A097812, A151557
sums of cubes: see sums of 2 cubes, sums of 3 cubes, etc.
sums of distinct cubes: A003997, A001476 (not)
sums of distinct squares: A003995, A001422 (not), A134422

sums of tetrahedral numbers: A000797, A104246
sums of k triangular numbers, for k=1,..., number of ways of writing n as: A10054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809
sums of two distinct prime cubes: A120398
Sum_{k = 0..n} f(k) is standard OEIS notation (rather than sum_k^n, sum for k from 0 to n, etc.)
super-abundant numbers: A004394
superabundant numbers: A004394
superfactorials: A000178*
superior highly composite numbers: A002201
Superpositions of cycles:: A003223, A003225, A003224
superqueens: A007631, A051223, A051224
supersingular primes: A006962
supertangrams: A006074
supertough: A007036
Surfaces:: A000703, A000934
susceptibility , sequences related to :

susceptibility (1): A002166 A002168 A002170 A002906 A002907 A002910 A002911 A002912 A002913 A002914 A002915 A002919
susceptibility (2): A002920 A002921 A002923 A002924 A002925 A002926 A002927 A002978 A002979 A003119 A003194 A003195
susceptibility (3): A003220 A003279 A003488 A003489 A003490 A003491 A003492 A003493 A003494 A003495 A005399 A005401
susceptibility (4): A007214 A007215 A007216 A007217 A007218 A007277 A007278 A007287 A007288 A008547 A008574 A010039
susceptibility (5): A010040 A010041 A010042 A010043 A010044 A010045 A010046 A010047 A010115 A010116 A010117 A010118
susceptibility (6): A010119 A010556 A010579 A010580 A030008 A030046 A054275 A054389 A054410 A054764 A055856 A055857

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools