|
|
A046894
|
|
Numbers expressible as p^3 + q^3 with p, q prime in at least two ways.
|
|
2
|
|
|
6058655748, 6507811154, 12906787894, 20593712932, 140253191624, 293833825922, 1087909914364, 1103283061146, 1361780473538, 1421173058634, 1479220098876, 1633040181864, 2671279610454, 4162315049802, 5031989043172
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
All terms less than 2^63 are expressible in only two ways. Every term produces two terms in A125063.
Verified the above comment up to 2^64. - Toshitaka Suzuki, Jan 04 2017
|
|
LINKS
|
T. D. Noe and Toshitaka Suzuki, Table of n, a(n) for n = 1..2013, (terms < 2^64), (first 1604 terms from T. D. Noe)
C. Rivera, The prime version of the taxicab problem
|
|
EXAMPLE
|
First few examples are 6058655748 = 61^3 + 1823^3 = 1049^3 + 1699^3
6507811154 = 31^3 + 1867^3 = 397^3 + 1861^3
12906787894 = 593^3 + 2333^3 = 1787^3 + 1931^3
20593712932 = 71^3 + 2741^3 = 977^3 + 2699^3
140253191624 = 1321^3 + 5167^3 = 3853^3 + 4363^3
293833825922 = 1567^3 + 6619^3 = 3769^3 + 6217^3
|
|
MATHEMATICA
|
Sort[First /@ Select[Tally[Flatten[Table[p^3 + q^3, {p, Prime[Range[2000]]}, {q, Prime[Range[PrimePi[p - 1]]]}]]], Last[#] > 1 &]] (* Jayanta Basu, Jun 30 2013 *)
|
|
CROSSREFS
|
Cf. A125063.
Sequence in context: A198174 A034646 A234378 * A145552 A290502 A172663
Adjacent sequences: A046891 A046892 A046893 * A046895 A046896 A046897
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
David W. Wilson
|
|
STATUS
|
approved
|
|
|
|