This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046894 Numbers expressible as p^3 + q^3 with p, q prime in at least two ways. 2
 6058655748, 6507811154, 12906787894, 20593712932, 140253191624, 293833825922, 1087909914364, 1103283061146, 1361780473538, 1421173058634, 1479220098876, 1633040181864, 2671279610454, 4162315049802, 5031989043172 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms less than 2^63 are expressible in only two ways. Every term produces two terms in A125063. Verified the above comment up to 2^64. - Toshitaka Suzuki, Jan 04 2017 LINKS T. D. Noe and Toshitaka Suzuki, Table of n, a(n) for n = 1..2013, (terms < 2^64), (first 1604 terms from T. D. Noe) C. Rivera, The prime version of the taxicab problem EXAMPLE First few examples are 6058655748 = 61^3 + 1823^3 = 1049^3 + 1699^3 6507811154 = 31^3 + 1867^3 = 397^3 + 1861^3 12906787894 = 593^3 + 2333^3 = 1787^3 + 1931^3 20593712932 = 71^3 + 2741^3 = 977^3 + 2699^3 140253191624 = 1321^3 + 5167^3 = 3853^3 + 4363^3 293833825922 = 1567^3 + 6619^3 = 3769^3 + 6217^3 MATHEMATICA Sort[First /@ Select[Tally[Flatten[Table[p^3 + q^3, {p, Prime[Range[2000]]}, {q, Prime[Range[PrimePi[p - 1]]]}]]], Last[#] > 1 &]] (* Jayanta Basu, Jun 30 2013 *) CROSSREFS Cf. A125063. Sequence in context: A198174 A034646 A234378 * A145552 A290502 A172663 Adjacent sequences:  A046891 A046892 A046893 * A046895 A046896 A046897 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 10:44 EST 2017. Contains 294936 sequences.