This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Cy

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Cy


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


cycle index , sequences related to :
cycle index in Maple: see A036658;
cycle index of representations of groups: A000292 (D_6); A002817 (D_8); A006008 (A_4); A000389, A063843 (S_5); A000543, A047780, A060530 (group of cube)
cycle index of symmetric group S_n for n = 1..27 in Maple: see link in A000142;

Cycles in x -> x^2 mod n: A023153
cyclic group: see groups, cyclic
cyclic numbers: A003277*, A001914, A001913
Cyclic:: A002885, A007039, A006205, A007040, A006609, A002956, A005666, A006204, A007687, A007688, A005665, A000804, A000805
cyclotomic cosets: A064285, A064286, A064287

cyclotomic fields, sequences related to :
cyclotomic fields, class numbers of: A000927 (first factor h-), A055513 (class number h), A061653, A035115
cyclotomic fields, with class number 1: A005848
cyclotomic polynomials, sequences related to :
see also: Index section Pol: inverse of cyclotomic polynomials
cyclotomic polynomials, degree of: A000010 (= Euler's totient function φ)
cyclotomic polynomials, inverse of: The expansion of 1/ΦN = 1/Phi(N) is N-periodic, see Index to periodic sequences. It satisfies also a linear recurrence of order degree(ΦN) = A000010(N) < N, see Index entries for linear recurrences. The expansions are given in sequences A007273, A010891, A010892, A014016 - A016327, A033999, A049347, A056594, A240328 .. A240467 and A291137 (table of all the previous sequences). See Index section Pol: inverse of cyclotomic polynomials for an extensive list.
cyclotomic polynomials, coefficients of, sequences related to :
cyclotomic polynomials, largest coefficient of: A013594*, A046887
cyclotomic polynomials, number of coefficients: A051664
cyclotomic polynomials, positions of coefficients: A063696, A063697, A063698, A063699, A063670, A063671
cyclotomic polynomials, triangle of coefficients of: A013595*, A013596*
cyclotomic polynomials, values at phi , sequences related to :
cyclotomic polynomials, values at phi = (sqrt(5)+1)/2: A063703, A063705, A063707
cyclotomic polynomials, values at x = integers, sequences related to :
cyclotomic polynomials, values at x (square array): A253240
cyclotomic polynomials, values at x = -1 to -13: A020513, A020501, A020502, A020503, A020504, A020505, A020506, A020507, A020508, A020509, A020510, A020511, A020512
cyclotomic polynomials, values at x = 0 to 13: A158388, A020500, A019320, A019321, A019322, A019323, A019324, A019325, A019326, A019327, A019328, A019329, A019330, A019331
cyclotomic polynomials, values at x = 2^n: A070526, A070527
cyclotomic polynomials, values at x = EulerPhi(n): A070524, A070525
cyclotomic polynomials, values at x = n: A070518, A070519, A070520, A070521
cyclotomic polynomials, values at x = prime(n): A070522, A070523
cyclotomic polynomials, values at x = integer: A000012 (Phi_0(n)) A023443 (Phi_1(n)) A000027 (Phi_2(n)) A002061 (Phi_3(n)) A002522 (Phi_4(n)) A053699 (Phi_5(n)) A002061 (Phi_6(n)) A053716 (Phi_7(n)) A002523 (Phi_8(n)) A060883 (Phi_9(n)) A060884 (Phi_10(n)) A060885 (Phi_11(n)) A060886 (Phi_12(n)) A060887 (Phi_13(n)) A060888 (Phi_14(n)) A060889 (Phi_15(n)) A060890 (Phi_16(n)) A060891 (Phi_18(n)) A060892 (Phi_20(n)) A060893 (Phi_24(n)) A060894 (Phi_30(n)) A060895 (Phi_32(n)) A060896 (Phi_36(n))
cyclotomic polynomials, values at x = integer (is prime): A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), A250177 (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A253854 (262144), A244150 (524288), A243959 (1048576)
cyclotomic polynomials, values at x = integer (is prime): see also A085398, A117544, A117545, A252503
cyclotomic polynomials: see also polynomials, cyclotomic

cylinder, kings on a: A002493
Czech: see also Index entries for sequences related to number of letters in n
C[n,k]: binomial coefficient n-choose-k (see A007318)
C_n lattice: coordination sequence for: see A010006


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]