This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001422 Numbers which are not the sum of distinct squares. 23
 2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is the complete list (Sprague). REFERENCES S. Lin, Computer experiments on sequences which form integral bases, pp. 365-370 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970. Harry L. Nelson, The Partition Problem, J. Rec. Math., 20 (1988), 315-316. J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 222. LINKS R. E. Dressler and T. Parker, 12,758, Math. Comp. 28 (1974), 313-314. T. Sillke, Not the sum of distinct squares R. Sprague, Über Zerlegungen in ungleiche Quadratzahlen, Math. Z. 51, (1948), 289-290. Eric Weisstein's World of Mathematics, Square Number. FORMULA Complement of A003995. MATHEMATICA nn=50; t=Rest[CoefficientList[Series[Product[(1+x^(k*k)), {k, nn}], {x, 0, nn*nn}], x]]; Flatten[Position[t, 0]] (* T. D. Noe, Jul 24 2006 *) CROSSREFS Cf. A025524 (number of numbers not the sum of distinct n-th-order polygonal numbers) Cf. A007419 (largest number not the sum of distinct n-th-order polygonal numbers) Cf. A053614, A121405 (corresponding sequences for triangular and pentagonal numbers) Cf. A033461, A276517. Sequence in context: A064472 A276887 A276517 * A097757 A304028 A155152 Adjacent sequences:  A001419 A001420 A001421 * A001423 A001424 A001425 KEYWORD nonn,fini,full,changed AUTHOR N. J. A. Sloane, Jeff Adams (jeff.adams(AT)byu.net) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 10:27 EDT 2019. Contains 328147 sequences. (Running on oeis4.)