

A001422


Numbers which are not the sum of distinct squares. This is the complete list (Sprague).


23



2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27, 28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

S. Lin, Computer experiments on sequences which form integral bases, pp. 365370 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
Harry L. Nelson, The Partition Problem, J. Rec. Math., 20 (1988), 315316.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 222.


LINKS

Table of n, a(n) for n=1..31.
R. E. Dressler and T. Parker, 12,758, Math. Comp. 28 (1974), 313314.
T. Sillke, Not the sum of distinct squares
R. Sprague, Über Zerlegungen in ungleiche Quadratzahlen, Math. Z. 51, (1948), 289290.
Eric Weisstein's World of Mathematics, Square Number.
Index entries for sequences related to sums of squares


FORMULA

Complement of A003995.


MATHEMATICA

nn=50; t=Rest[CoefficientList[Series[Product[(1+x^(k*k)), {k, nn}], {x, 0, nn*nn}], x]]; Flatten[Position[t, 0]] (* T. D. Noe, Jul 24 2006 *)


CROSSREFS

Cf. A025524 (number of numbers not the sum of distinct nthorder polygonal numbers)
Cf. A007419 (largest number not the sum of distinct nthorder polygonal numbers)
Cf. A053614, A121405 (corresponding sequences for triangular and pentagonal numbers)
Cf. A033461, A276517.
Sequence in context: A064472 A276887 A276517 * A097757 A304028 A155152
Adjacent sequences: A001419 A001420 A001421 * A001423 A001424 A001425


KEYWORD

nonn,fini,full


AUTHOR

N. J. A. Sloane, Jeff Adams (jeff.adams(AT)byu.net)


STATUS

approved



