login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035292 Number of similar sublattices of Z^4 of index n^2. 1
1, 3, 8, 3, 12, 24, 16, 3, 41, 36, 24, 24, 28, 48, 96, 3, 36, 123, 40, 36, 128, 72, 48, 24, 97, 84, 176, 48, 60, 288, 64, 3, 192, 108, 192, 123, 76, 120, 224, 36, 84, 384, 88, 72, 492, 144, 96, 24, 177, 291, 288, 84, 108, 528, 288, 48, 320, 180, 120, 288, 124, 192 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Multiplicative with a(2^p) = 3, a(p^e) = (e+1)*p^e + (e+1)*p^e + (2*(1+(e*p-e-1)*p^e))/((p-1)^2), p > 2. - Christian G. Bower, May 21 2005

LINKS

Table of n, a(n) for n=1..62.

Research Group Michael Baake, Preprints & Recent Articles: Algebra, Combinatorics and Number Theory

Michael Baake and Robert V. Moody, Similarity submodules and root systems in four dimensions, arXiv:math/9904028 [math.MG].

Michael Baake and Robert V. Moody, Similarity submodules and root systems in four dimensions, Canad. J. Math. (1999), 51 1258-1276.

John H. Conway, E. M. Rains and N. J. A. Sloane, On the existence of similar sublattices, Canad. J. Math. 51 (1999), 1300-1306 (Abstract, pdf, ps).

Index entries for sequences related to sublattices

FORMULA

Baake and Moody give Dirichlet generating function.

For odd n, a(n) = A045771(n); for even n, a(n) = 3*A045771(n). - Michel Marcus, Mar 03 2014

MATHEMATICA

Clear[ a, f ]; a[ {p_, r_} ] := If[ p == 2, 3, (r + 1)*p^r + (2*(1 - (r + 1)*p^r + r*p^(r + 1)))/(p - 1)^2 ]; f[ m_Integer ] := f[ m ] = Times @@ a /@ FactorInteger[ m ]; (* f[ m ] is number of similar sublattices of Z^4 of index m^2 *)

PROG

(PARI) fp(p, e) = if (p % 2, (e+1)*p^e + 2*(1-(e+1)*p^e+e*p^(e+1))/(p-1)^2, 1);

a(n) = {my(f = factor(n)); a045771 = prod(i=1, #f~, fp(f[i, 1], f[i, 2])); if (n % 2, a045771, 3*a045771); } \\ Michel Marcus, Mar 03 2014

CROSSREFS

Cf. A045771.

Sequence in context: A016623 A046543 A233129 * A144457 A220138 A146975

Adjacent sequences:  A035289 A035290 A035291 * A035293 A035294 A035295

KEYWORD

nonn,mult

AUTHOR

Michael Baake (michael.baake(AT)uni-tuebingen.de)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 22 00:41 EST 2014. Contains 252326 sequences.