This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Gre

From OeisWiki
Jump to: navigation, search

Index to OEIS: Section Gre

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]

greatest common divisor: see entries under GCD
greatest prime divisor: A006530
greatest prime factor: A006530
greedy algorithm:: A006892, A006894, A006893
greedy GCD sequence: see EKG sequence
greedy rational packing sequence: A066720*, A066721*, A066775, A066657/A066658, A066848, A066849
Green's function , sequences related to :

Green's function:: A003301, A003283, A003299, A003282, A003302, A003280, A003284, A003300, A003298, A003281

greengrocer's numbers: A002412*
Greg trees: see trees, Greg
Grids:: A005418, A007543, A007544
Grossman's constant: A085835
group: see groups
groupoids , sequences related to :

groupoids , (This word has several different interpretations!)
groupoids , A001329* (unlabeled) A001424 A002489* (labeled) A079171
groupoids, 1 idempotent: A030253*, A030254, A030255, A030263, A030264, A030265, A030271
groupoids, anti-associative: A079179, A079180, A079181
groupoids, anti-commutative: A079189, A079190, A079191
groupoids, as categories with inverses, connected: A140185, A140186, A140187
groupoids, as categories with inverses: A140188, A140189, A140190
groupoids, associative: see semigroups
groupoids, asymmetric: A030245*, A030248, A030251, A030255, A030258, A030261, A030264, A030271, A038019, A038022, A038023
groupoids, by idempotents: A038018*, A038019, A038020, A038021, A038022, A038023
groupoids, commutative (1): A001425* (unlabeled) A023813* (labeled) A030256, A030257, A030258, A030259, A030260, A030261, A030262, A030263, A030264, A030265
groupoids, commutative (2): A038016, A038017, A076113, A038021, A038022, A038023, A079185, A079195, A079196, A079197, A090598, A090599
groupoids, idempotent: A030247* (unlabeled) A030248, A030249, A030257, A030258, A030259, A038015, A038017, A076113, A090588* (labeled)
groupoids, no idempotents: A030250*, A030251, A030252, A030260, A030261, A030262
groupoids, non-anti-associative: A079176, A079177, A079178
groupoids, non-anti-commutative: A079186, A079187, A079188
groupoids, non-associative: A079172, A079173, A079174, A079192, A079193, A079194, A079195, A079196, A079197
groupoids, non-commutative: A079182, A079183, A079184, A079192, A079193, A079194
groupoids, pointed: A006448*, A038015, A038016, A038017
groupoids, see also: A079202, A079203, A079204, A079206
groupoids, self-converse: A029850*, A090604
groupoids, symmetric: A030246, A030249, A030252, A030254, A030256, A030259, A030262, A030265, A038020
groupoids, with identity: A090598, A090599, A090600, A090601*, A090602*, A090603, A090604
groupoids: see also: groups
groupoids: see also: quasigroups
groupoids: see also: semigroups

groups , number of elements of order n in :

G2(33): A284925
icosahedral: A107714
Janko: A284887, A284888
Suzuki: A284430, A284519
Tits: A284952
unitary groups: A284953, A284960, A284961, A280962, A284970, A284980, A284981, A284984

groups , sequences related to :

groups, A000001* (number of groups of order n), A000679* (number of order 2^n), A034383*
groups, abelian, every group of this order is: A051532
groups, abelian: A000688*, A034382*, A046054-A046056, A050360, A051532
groups, alternating: A000702, A001710, A007002
groups, alternating: see also alternating group A_m, degrees of irreducible representations of
groups, automorphism group of: A059773
groups, binary icosahedral: A008651
groups, binary octahedral: A008647
groups, braid, see braids
groups, chain of subgroups in S_n, A007238
groups, conjugacy classes: A073043*, A003061*, A002319*, A006379*, A000702, A000638, A029726, A045615, A006951, A006952, A003606
groups, crystallographic: see groups, space
groups, cyclic (1): A001034, A001443, A002956, A006204, A006205, A006379, A007687, A007688, A008610, A008611, A008646
groups, cyclic (2): A008976, A009490, A019536, A034381, A037221, A046072, A047680, A049287, A049288, A049289, A049297, A049309
groups, cyclic (3): A051625, A051636, A053651, A053658, A053660, A054522, A057731
groups, cyclic, every group of this order is: A003277, A050384
groups, dihedral, A007503
groups, Euclidean: see groups, space
groups, finite, such orders that there are a particular number of them: A003277, A054395, A055561, A054396, A054397, A135850, A249550, A249551, A249552, A249553, A249554, A249555, A292896, A294155, A294156
groups, free abelian: A007322
groups, general linear, A006952, A006951, A003606
groups, generators for, A001691
groups, growth series for: see growth series for groups
groups, invariants of, A002956
groups, labeled: A034381, A034382, A034383*, A058161-A058163
groups, least inverse, A046057
groups, Lorentzian, A005793, A005794
groups, maximal number of subgroups in: A018216, A061034, A083573
groups, modular : sequences related to :
groups, modular: (1) A001766, A001767, A004048, A005133, A005793, A005794, A027364, A027633, A027634, A027638, A027639, A027672
groups, modular: (2) A037944, A037945, A037946, A037947, A054886, A063759, A001617
groups, Monster simple group: see Monster simple group
groups, multiplicative, A007230, A007232, A007233, A007231
groups, nilpotent, every group of this order is: A056867, A056868
groups, nonabelian: A060689*, A003061
groups, number of, A000001*, A060689*, A000679, A046057, A046058, A046059
groups, of order n: A000001, 2^n: A000679, 3^n: A090091, 5^n: A090130, 7^n: A090140
groups, of Rubik cubes: see under Rubik cube
groups, of tournaments: see tournaments
groups, only one of this order: A003277, A050384
groups, orthogonal, A003053
groups, perfect: A060793
groups, permutation, primitive: A000019*, A023675*
groups, permutation, transitive: A002106*, A023676*
groups, permutation: A000637*, A000638*, A005432*
groups, Poincare series for: see growth series for groups
groups, pointed: A126103, A126102
groups, projective special linear: A002884, A117762, A334884, A334994, A335000
groups, see also: A046058, A046059, A053403
groups, shuffle: A007346, A014525, A014766, A014767
groups, simple: A005180* (orders of), A001034* (orders of noncyclic), A001228* (sporadic), A008976
groups, simple: see also A006379
groups, solvable, every group of this order is: A056866
groups, space: A004029*, A006227*, A004027*, A004028*, A006226, A005031, A007308, A293060*, A293061*, A293062, A293063
groups, symmetric, A000701, A003040, A007234, A005012, A001691
groups, symmetric: see also symmetric group S_m, degrees of irreducible representations of
groups, tiling: see groups, space

growth function, restricted: A120698, A008277, A124496, A056858, A056861, A056862, A270236
growth series (or Poincare series) for groups, sequences related to :

growth series for groups D_n, n = 3,...,32: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379; also A162206

growth series: see also OEIS Index entries for sequences related to coordination sequences
Grundy's game, sequences related to :

Grundy's game: A002188, A036685, A036686

Gudermannian: A028296*

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]