login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018888 Numbers which are not the sum of seven nonnegative cubes. 5
15, 22, 23, 50, 114, 167, 175, 186, 212, 231, 238, 239, 303, 364, 420, 428, 454 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Old name: Write n = m_1^3 + ... +m_k^3 where the m_i are positive integers and k is minimal; sequence gives conjectured list of numbers for which k = 8 or 9.

23 and 239 require 9 cubes and no numbers require > 9 cubes.

Sequence is conjectured to be complete.

Kadiri shows that a(n) < e^71000. - Charles R Greathouse IV, Dec 30 2014

Siksek shows that this sequence is complete. - Charles R Greathouse IV, May 05 2015

REFERENCES

J. Roberts, Lure of the Integers, entry 239.

F. Romani, Computations concerning Waring's problem, Calcolo, 19 (1982), 415-431.

LINKS

Table of n, a(n) for n=1..17.

Jan Bohman and Carl-Erik Froberg, Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.

Jean-Marc Deshouillers, Francois Hennecart and Bernard Landreau; appendix by I. Gusti Putu Purnaba, 7373170279850, Math. Comp. 69 (2000), 421-439.

N. D. Elkies, Every even number greater than 454 is the sum of seven cubes, arXiv 1009.3983.

H. Kadiri, Short effective intervals containing primes in arithmetic progressions and the seven cubes problem, Math. Comp. 77 (2008), pp. 1733-1748.

K. S. McCurley, An effective seven-cube theorem, J. Number Theory, 19 (1984), 176-183.

Samir Siksek, Every integer greater than 454 is the sum of at most seven positive cubes, arXiv:1505.00647 [math.NT], 2015.

Eric Weisstein's World of Mathematics, Cubic Number

Eric Weisstein's World of Mathematics, Waring's Problem

Index entries for sequences related to sums of cubes

EXAMPLE

239 = 1^3 + 4(2^3) + 3(3^3) + 5^3 - requires 9 cubes.

MAPLE

N:= 10000:

C1:= {seq(i^3, i=0..floor(N^(1/3)))}:

C2:= select(`<=`, {seq(seq(a+b, a=C1), b=C1)}, N):

C3:= select(`<=`, {seq(seq(a+b, a=C1), b=C2)}, N):

C5:= select(`<=`, {seq(seq(a+b, a=C2), b=C3)}, N):

C7:= select(`<=`, {seq(seq(a+b, a=C2), b=C5)}, N):

{$1..N} minus C7; # Robert Israel, Dec 30 2014

MATHEMATICA

nn=10000; t=CoefficientList[Series[Sum[x^(k^3), {k, 0, Floor[nn^(1/3)]}]^7, {x, 0, nn}], x]; Flatten[Position[t, 0]]-1 - T. D. Noe, Sep 05 2006

PROG

(PARI) S=sum(n=0, 7, x^n^3, O(x^455)); v=Vec(S^7); v=v[2..#v];

for(n=1, #v, if(v[n]==0, print1(n", "))) \\ Charles R Greathouse IV, May 05 2015

CROSSREFS

Cf. A018889.

Sequence in context: A205597 A236764 A066758 * A115174 A092783 A108638

Adjacent sequences:  A018885 A018886 A018887 * A018889 A018890 A018891

KEYWORD

fini,full,nonn

AUTHOR

Jud McCranie

EXTENSIONS

Corrected by T. D. Noe, Sep 05 2006

Corrected the definition (this question is still open). - N. J. A. Sloane, Sep 25 2011

New name from Charles R Greathouse IV, Dec 30 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 25 10:56 EST 2017. Contains 282599 sequences.