

A022552


Numbers that are not the sum of 2 squares and a nonnegative cube.


18



7, 15, 22, 23, 39, 55, 70, 71, 78, 87, 94, 103, 111, 115, 119, 120, 139, 167, 211, 254, 263, 267, 279, 286, 302, 311, 312, 331, 335, 342, 391, 403, 435, 454, 455, 470, 475, 499, 518, 559, 590, 595, 598, 622, 643, 659, 691, 695, 715, 727, 771
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

There are 434 terms < 6 * 10^7 of which the largest is 5042631 ~= 5 * 10^6. Is this sequence finite?  David A. Corneth, Jun 23 2018


LINKS

R. J. Mathar, David A. Corneth, Table of n, a(n) for n = 1..434 (First 325 terms from R. J. Mathar, now terms < 6 * 10^7)
Steven Finch, PatternAvoiding Permutations [Broken link?]
Steven Finch, PatternAvoiding Permutations [Cached copy, with permission]
W. Jagy and I. Kaplansky, Sums of Squares, Cubes and Higher Powers, Experimental Mathematics, vol. 4 (1995) pp. 169173.
Index entries for sequences related to sums of squares


MAPLE

isA022552 := proc(n)
not isA022551(n) ;
end proc:
n := 1:
for c from 0 do
if isA022552(c) then
printf("%d %d\n", n, c);
n := n+1 ;
end if;
end do: # R. J. Mathar, Sep 02 2016


CROSSREFS

Sequence in context: A179676 A053354 A274700 * A082658 A022389 A041225
Adjacent sequences: A022549 A022550 A022551 * A022553 A022554 A022555


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Will Jagy


STATUS

approved



