This site is supported by donations to The OEIS Foundation.

# Index to OEIS: Section Sq

Jump to: navigation, search

# Index to OEIS: Section Sq

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]

##### sqrt(2) etc., sequences related to :
sqrt(2), continued cotangent for: A002666*
sqrt(2), continued fraction convergents to: A001333*/A000129*
sqrt(2), decimal expansion of: A002193*; binary expansion: A004539
sqrt(3), decimal expansion of: A002194*
sqrt(n), length of period of continued fraction for: A003285*, A035015, A013943
sqrt(n), nearest integer to, etc.: A000196*, A000194*, A003059*, A000267
sqrt(p), length of period of continued fraction for: A054269*

SQS: see Steiner quadruple systems
square arrays, indexing: A073189*

##### square lattice , sequences related to :
square lattice (1):: A002976, A002909, A006462, A002907, A004020, A006731, A006808, A006727, A006461, A002908
square lattice (2):: A002890, A006191, A002900, A006725, A005566, A006724, A006143, A005768, A005436, A002931
square lattice (3):: A007290, A005559, A006732, A006734, A006728, A006730, A003304, A002928, A003305, A003493
square lattice (4):: A006733, A006729, A005558, A007288, A005563, A006835, A006189, A006772, A005560, A002979
square lattice (5):: A004018, A006144, A005883, A007215, A003203, A173380, A002906, A001411, A006817, A006192
square lattice (6):: A005401, A003489, A005561, A005569, A007220, A000328, A005555, A006773, A005562, A005402
square lattice (7):: A003198, A005564, A006814, A006815, A006816, A007221, A006142, A007291, A003201, A006726
square lattice (8):: A002927, A005770, A005567, A005769, A005556, A005565, A007222, A005557
square lattice, polygons on: A002931*
square lattice, sublattices of: A054345*, A054346*, A145392, A145393
square lattice, theta series of: A004018* ; see also: theta series of square lattice
square lattice, walks on: A001411*
square lattice: see also cubic lattice

square numbers: A000290*, A162395 (with signs: (-)^n n²), A001844* (centered square numbers: n²+(n+1)²). See also "squares", below.
square pyramidal numbers: A000330*, A005918 (surface)
square root of pi: A002161

##### square roots , sequences related to :
square roots of integers (01): A002193 (sqrt(2)), A002194 (sqrt(3)), A002163 (sqrt(5)), A010464 (sqrt(6)), A010465 (sqrt(7)), A010466 (sqrt(8)=2*sqrt(2)), A010467 (sqrt(10)), A010468 (sqrt(11)), A010469 (sqrt(12)=2*sqrt(3)), A010470 (sqrt(13)), A010471 (sqrt(14)), A010472 (sqrt(15)),
square roots of integers (02): A010473 (sqrt(17)), A010474 (sqrt(18)=3*sqrt(2)), A010475 (sqrt(19)), A010476 (sqrt(20)=2*sqrt(5)), A010477 (sqrt(21)), A010478 (sqrt(22)), A010479 (sqrt(23)), A010480 (sqrt(24)=2*sqrt(6)), A010481 (sqrt(26)), A010482 (sqrt(27)=3*sqrt(3)), A010483 (sqrt(28)=2*sqrt(7)), A010484 (sqrt(29)),
square roots of integers (03): A010485 (sqrt(30)), A010486 (sqrt(31)), A010487 (sqrt(32)=4*sqrt(2)), A010488 (sqrt(33)), A010489 (sqrt(34)), A010490 (sqrt(35)), A010491 (sqrt(37)), A010492 (sqrt(38)), A010493 (sqrt(39)), A010494 (sqrt(40)=2*sqrt(10)), A010495 (sqrt(41)), A010496 (sqrt(42)),
square roots of integers (04): A010497 (sqrt(43)), A010498 (sqrt(44)=2*sqrt(11)), A010499 (sqrt(45)=3*sqrt(5)), A010500 (sqrt(46)), A010501 (sqrt(47)), A010502 (sqrt(48)=4*sqrt(3)), A010503 (sqrt(50)=5*sqrt(2)), A010504 (sqrt(51)), A010505 (sqrt(52)=2*sqrt(13)), A010506 (sqrt(53)), A010507 (sqrt(54)=3*sqrt(6)), A010508 (sqrt(55)),
square roots of integers (05): A010509 (sqrt(56)=2*sqrt(14)), A010510 (sqrt(57)), A010511 (sqrt(58)), A010512 (sqrt(59)), A010513 (sqrt(60)=2*sqrt(15)), A010514 (sqrt(61)), A010515 (sqrt(62)), A010516 (sqrt(63)=3*sqrt(7)), A010517 (sqrt(65)), A010518 (sqrt(66)), A010519 (sqrt(67)), A010520 (sqrt(68)=2*sqrt(17)),
square roots of integers (06): A010521 (sqrt(69)), A010522 (sqrt(70)), A010523 (sqrt(71)), A010524 (sqrt(72)=6*sqrt(2)), A010525 (sqrt(73)), A010526 (sqrt(74)), A010527 (sqrt(75)=5*sqrt(3)), A010528 (sqrt(76)=2*sqrt(19)), A010529 (sqrt(77)), A010530 (sqrt(78)), A010531 (sqrt(79)), A010532 (sqrt(80)=4*sqrt(5)),
square roots of integers (07): A010533 (sqrt(82)), A010534 (sqrt(83)), A010535 (sqrt(84)=2*sqrt(21)), A010536 (sqrt(85)), A010537 (sqrt(86)), A010538 (sqrt(87)), A010539 (sqrt(88)=2*sqrt(22)), A010540 (sqrt(89)), A010541 (sqrt(90)=3*sqrt(10)), A010542 (sqrt(91)), A010543 (sqrt(92)=2*sqrt(23)), A010544 (sqrt(93)),
square roots of integers (08): A010545 (sqrt(94)), A010546 (sqrt(95)), A010547 (sqrt(96)=4*sqrt(6)), A010548 (sqrt(97)), A010549 (sqrt(98)=7*sqrt(2)), A010550 (sqrt(99)=3*sqrt(11))
square roots, functional: see functional square roots
square roots, of numbers: we can write sqrt(n) = b*sqrt(c) where c is squarefree. Then b = A000188(n) is the "inner square root" of n, c = A007913(n), LCM(b,c) = A007947(n) = "squarefree kernel" of n and bc = A019554(n) = "outer square root" of n
square roots, of primes: A000006
square roots, see also: A006242, A006243

square, truncated: see truncated square
square-free: see squarefree
square-full numbers: see squarefull numbers

##### squared rectangles , sequences related to :
squared rectangles: A217154*, A110148
squared rectangles, compound: A217152, A217153, A217374, A217375
squared rectangles, sides of: A067010, A067011
squared rectangles, sides of subsquares of: A195984
squared rectangles, simple: A002839*, A002881, A219766, A220165, A220166, A220167
squared rectangles, with specific sides and squares beyond 2-by-2: A002478, A054856, A054857, A054858, A219924*, A219925, A219926, A219927, A219928, A219929
squared rectangles, with specific sides and squares up to 2-by-2: A001045, A054854, A054855, A063650, A063651, A063652, A063653, A063654, A128099, A128101, A128102, A179618
squared rectangles, with squares of sizes 1 to n (unit squares can fill gaps): A038666, A081287
##### squared squares , sequences related to :
squared squares: A217156*, A045846, A181735, A217150
squared squares, compound: A181340, A217155
squared squares, least number of subsquares in: A018835, A211302
squared squares, least number of subsquares in (when no common factor), see Mrs Perkins's quilt
squared squares, number of subsquare sizes of: A036444
squared squares, sides of: A129947, A217148, A217149
squared squares, sides of subsquares of: A014530, A036445
squared squares, simple: A006983*, A002962, A217151, A220164
squared squares, with squares of size up to 2-by-2: A018807, A063443
squared squares, with squares of sizes 1 to n (unit squares can fill gaps): A005842, A092137
##### squarefree , sequences related to :
squarefree graphs: A006786, A006855
squarefree numbers, gaps between: A020753, A020754, A020755
squarefree numbers: A005117*, complement is A013929
squarefree numbers: see also A007424, A007674, A007675, A013929, A039956, A048640, A053797, A053806, A045882, A051681, A056912
squarefree sequences: A005678, A005679, A005680, A005681
squarefree sequences: see also Thue-Morse sequences
squarefree sequences: see also squarefree words
squarefree words: A006156, A007413, A337005
squarefree words: see also squarefree sequences
squarefree words, alternating parity: A003324, A112658, A122002, A125047
squarefree words, weakly: A170823

squarefull numbers: A001694*, A013929; see also: A038109, A076871, A076872, and powerful numbers

##### squares , sequences related to :
squares: A000290*; A162395 (with signs: (-)^n n²).
squares having only given digits: {0,1,2} A058412 = A058411^2, ..., {0,3,4}: A058430 = A058429^2, ..., {0,8,9}: A058456 = A058455^2,
{1,2,3}: A030174 = A030175^2, {1,4,9}: A006716 = A027675^2, {4,5,6}: A030176 = A030177^2,
{2,3,6}: A058458 = A058457^2, ..., {3,4,7}: A058464 = A058463^2, ..., {5,8,9}: A058469^2 = A058470, ..., {0,1,9}: A058473^2 = A058474.
See also: P. de Geest's index to Squares having at most three distinct digits
See also: Numbers avoiding certain digits (on this OEIS wiki).
squares and their root use only digits...: {0,1,2}: A136808, {0,1,2,3}: A136809, {0,1,2,3,4}: A136810, ... {5,6,7,8,9}: A137147.
squares in a rectangle: A168339
squares, largest digit is 2, 3, 4, 5: A277959^2 = A277946, A277960^2 = A277947, A277961^2 = A277948, A295005^2 = A295015,
squares, largest digit is 6, 7, 8, 9: A295006^2 = A295016, A295007^2 = A295016, A295008^2 = A295018, A295009^2 = A295019.
squares, Latin: see Latin squares
squares, magic: see magic squares
squares, Möbius transform of: A007434; A007433 (inverse Möbius tr. applied twice).
squares modulo 10^n, number of: A000993 (number of quadratic residues mod 10^n).
squares modulo Fermat primes: A136803 (squares mod 257), A136804 (nonsquares mod 257), A136805 (squares mod 65537), A136806 (nonsquares mod 65537).
squares, other related sequences: A007297 ~ A263843 (g.f. = reversion of that of (-)^n n²)
squares, packing: A005842
squares, palindromic: see palindromic squares
##### squares, reversing digits of :
squares, reversing digits of, gives a square: A033294, A035090, A035122, A035125, A061909, A085305, A102859, A104379, A129914.
squares, reversing digits of, gives a square: see also A002942, A035124.
squares, reversing digits of, gives a square: for other polytopal numbers see A035090

squares, sums of, see under sums of squares

##### squares, truncating digits of :
squares, truncating digits of, gives a square: (i.e., floor[a(n)^2/b] is a square; the truncation x &maps; [x/b] is represented by ~> below)
A031149^2 = A023110 ~> A202303 = A031150^2 (base 10), A204502^2 = A204503 ~> (A000290) = A028310^2 (base 9),
A204514^2 = A055872 ~> A204504 = A204512^2 (base 8), A204516^2 = A055859 ~> A204513 = A204517^2 (base 7),
A204518^2 = A055851 ~> A204573 = A204519^2 (base 6), A204520^2 = A055812 ~> A203719 = A204521^2 (base 5),
A004275^2 = A055808 ~> A000290 = A028310^2 (base 4), A001075^2 = A055793 ~> A098301 = A001353^2 (base 3),
A001541^2 = A055792 ~> A084703 = A001542^2 (base 2), A204574 - A204577 = the last four written in binary.
See also Hasler's talk page

squares, undulating: A016073*
squares, written backwards: A002942
squares, written in base b: A002440 (b = 7), A002441 (b = 8), A002442 (b = 9).

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]