This site is supported by donations to The OEIS Foundation.

# Index to OEIS: Section Ru

### From OeisWiki

# Index to OEIS: Section Ru

- This is a section of the Index to the
**OEIS®**. - For further information see the main
**Index to OEIS**page. - Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:

[
Aa |
Ab |
Al |
Am |
Ap |
Ar |
Ba |
Be |
Bi |
Bl |
Bo |
Br |
Ca |
Ce |
Ch |
Cl |
Coa |
Coi |
Com |
Con |
Cor |
Cu |
Cy |
Da |
De |
Di |
Do |
Ea |
Ed |
El |
Eu |
Fa |
Fe |
Fi |
Fo |
Fu |
Ga |
Ge |
Go |
Gra |
Gre |
Ha |
He |
Ho |
Ia |
In |
J |
K |
La |
Lc |
Li |
Lo |
Lu |
M |
Mag |
Map |
Mat |
Me |
Mo |
Mu |
N |
Na |
Ne |
Ni |
No |
Nu |
O |
Pac |
Par |
Pas |
Pea |
Per |
Ph |
Poi |
Pol |
Pos |
Pow |
Pra |
Pri |
Pro |
Ps |
Qua |
Que |
Ra |
Rea |
Rel |
Res |
Ro |
**Ru** |
Sa |
Se |
Si |
Sk |
So |
Sp |
Sq |
St |
Su |
Sw |
Ta |
Te |
Th |
To |
Tra |
Tri |
Tu |
U |
V |
Wa |
We |
Wi |
X |
Y |
Z |
1 |
2 |
3 |
4
]

** Rubik cube, sequences related to : **

- Rubik cube: A005452* A080638* A080583 A060010 A061713 A080601* A080602*
- Rubik cube: groups of: A074914 A007458 A054434 A075152 A080656 A080657 A080658 A080659 A080660 A080661 A080662

Rudin-Shapiro sequence: see Index entry for Golay-Rudin-Shapiro sequence

Rudin-Shapiro word: see Index entry for Golay-Rudin-Shapiro sequence

Rule 30: see under cellular automata, Rule 30

ruler and compass: A003401

ruler function: A001511

ruler sequences: A001511, A007814, A007949, A051064

rulers, complete: see perfect rulers

rulers, Golomb: see Golomb rulers

rulers, optimal: see perfect rulers

rulers, perfect: see perfect rulers

rulers, perfect: see also Golomb rulers

** run length transforms, computed of : **

- run length transforms , computed of , (Unless otherwise noted the given function of one argument is applied to the length of each separate run of 1-bits in the binary expansion of n, the product of whose results is then the given sequence, with empty product taken as 1.)
- run length transforms, computed of, 2^n (A000079), 2^n - 1 (A000225): A001316, A246674
- run length transforms, computed of, 4^n (A000302): A102376
- run length transforms, computed of, (almost certainly) a(n) = (3*4^n - 0^n)/2 (A164908): A247640
- run length transforms, computed of, (almost certainly) a(n) = 3*a(n-1) + 4*a(n-2) (A102900): A247666
- run length transforms, computed of, a(n) = 1 if n>0, a(0) = 0 (A057427): A000012
- run length transforms, computed of, a(n) = 1 if n is 1, otherwise 0 (A063524): A085357
- run length transforms, computed of, a(n) = 1+n (A020725): A106737
- run length transforms, computed of, a(n) = 2*(3^n) - 2^n (A027649): A255297
- run length transforms, computed of, a(n) = 2*a(n-1) + 4*a(n-2) (A087206): A253064
- run length transforms, computed of, a(n) = 2*a(n-1) + 8*a(n-2) (A246036): A246037
- run length transforms, computed of, a(n) = 2 for n>0 0, a(0)=1 (A040000): A277561
- run length transforms, computed of, a(n) = 2^(n-1) for n>0, a(0)=1 (A011782): A245195
- run length transforms, computed of, a(n) = 3*4^n-2*3^n (A255463): A255462
- run length transforms, computed of, a(n) = 3*a(n-1) + 2*a(n-2) (A007483): A072272
- run length transforms, computed of, a(n) = 4*a(n-1) - a(n-2) (A001834): A255445
- run length transforms, computed of, a(n) = (5*2^(2*n)+(-2)^(n+1))/3 (A246030): A160239
- run length transforms, computed of, a(n) = n (A001477): A227349
- run length transforms, computed of, Catalans (A000108): A246596
- run length transforms, computed of, factorials, swinging factorials: A246660, A246661
- run length transforms, computed of, Fermat numbers (A000215): A246685
- run length transforms, computed of, Fibonacci(n+1), Fibonacci(n+2) (A000045): A246028, A245564
- run length transforms, computed of, floor(n/2)+1 (A008619): A278161
- run length transforms, computed of, G.f.: (1+2*x)*(1-x)/((1-4*x)*(1-2*x)*(1+x)) (A255467): A255466
- run length transforms, computed of, G.f.: (1+3*x)/((1-x)*(1+2*x)*(1-4*x)) (A255471): A255470
- run length transforms, computed of, G.f.: (1+3*x)/((1+x)*(1-4*x)) (A255465): A255464
- run length transforms, computed of, G.f.: (1-3*x^2+4*x^3)/((1-2*x)*(1-4*x+x^2)) (A253101): A253100
- run length transforms, computed of, Jacobsthal (as A001045(n+2)), and their squares: A071053, A246035
- run length transforms, computed of, other sequences (1): A246031, A246039, A253065, A253066, A253069, A253071
- run length transforms, computed of, other sequences (2): A253104, A255276, A255277, A255279, A255281, A255283
- run length transforms, computed of, other sequences (3): A255295, A255298, A255300, A255302, A255304, A255443
- run length transforms, computed of, other sequences (4): A255446, A255448, A255450, A255452, A255454, A255456
- run length transforms, computed of, other sequences (5): A255458, A255460, A255468, A255473, A255475, A255477
- run length transforms, computed of, primes (as in A008578): A246029
- run length transforms, computed of, primorials: A278159
- run length transforms, computed of, sequence A001317: A247282
- run length transforms, computed of, squares: A246595
- run length transforms, computed of, wt (A000120): A246588

run length transforms: see also A246314, A247649, A247650, A278222

runs in binary expansion: A005811*

runs, lengths of: A000002

Russian: see also Index entries for sequences related to number of letters in n

Ruth-Aaron numbers: A006145, A006146, A039752, A039753, A054738

r_2(n): A004018

- This is a section of the Index to the
**OEIS®**. - For further information see the main
**Index to OEIS**page. - Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- Full list of sections:

**Ru** |
Sa |
Se |
Si |
Sk |
So |
Sp |
Sq |
St |
Su |
Sw |
Ta |
Te |
Th |
To |
Tra |
Tri |
Tu |
U |
V |
Wa |
We |
Wi |
X |
Y |
Z |
1 |
2 |
3 |
4
]