This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Ru

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Ru


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Rubik cube, sequences related to :

Rubik cube: A005452* A080638* A080583 A060010 A061713 A080601* A080602*
Rubik cube: groups of: A074914 A007458 A054434 A075152 A080656 A080657 A080658 A080659 A080660 A080661 A080662

Rudin-Shapiro sequence: see Index entry for Golay-Rudin-Shapiro sequence
Rudin-Shapiro word: see Index entry for Golay-Rudin-Shapiro sequence
Rule 30: see under cellular automata, Rule 30
ruler and compass: A003401
ruler function: A001511
ruler sequences: A001511, A007814, A007949, A051064
rulers, complete: see perfect rulers
rulers, Golomb: see Golomb rulers
rulers, optimal: see perfect rulers
rulers, perfect: see perfect rulers
rulers, perfect: see also Golomb rulers
run length transforms, computed of :

run length transforms , computed of , (Unless otherwise noted the given function of one argument is applied to the length of each separate run of 1-bits in the binary expansion of n, the product of whose results is then the given sequence, with empty product taken as 1.)
run length transforms, computed of, 2^n (A000079), 2^n - 1 (A000225): A001316, A246674
run length transforms, computed of, 4^n (A000302): A102376
run length transforms, computed of, (almost certainly) a(n) = (3*4^n - 0^n)/2 (A164908): A247640
run length transforms, computed of, (almost certainly) a(n) = 3*a(n-1) + 4*a(n-2) (A102900): A247666
run length transforms, computed of, a(n) = 1 if n>0, a(0) = 0 (A057427): A000012
run length transforms, computed of, a(n) = 1 if n is 1, otherwise 0 (A063524): A085357
run length transforms, computed of, a(n) = 1+n (A020725): A106737
run length transforms, computed of, a(n) = 2*(3^n) - 2^n (A027649): A255297
run length transforms, computed of, a(n) = 2*a(n-1) + 4*a(n-2) (A087206): A253064
run length transforms, computed of, a(n) = 2*a(n-1) + 8*a(n-2) (A246036): A246037
run length transforms, computed of, a(n) = 2 for n>0 0, a(0)=1 (A040000): A277561
run length transforms, computed of, a(n) = 2^(n-1) for n>0, a(0)=1 (A011782): A245195
run length transforms, computed of, a(n) = 3*4^n-2*3^n (A255463): A255462
run length transforms, computed of, a(n) = 3*a(n-1) + 2*a(n-2) (A007483): A072272
run length transforms, computed of, a(n) = 4*a(n-1) - a(n-2) (A001834): A255445
run length transforms, computed of, a(n) = (5*2^(2*n)+(-2)^(n+1))/3 (A246030): A160239
run length transforms, computed of, a(n) = n (A001477): A227349
run length transforms, computed of, Catalans (A000108): A246596
run length transforms, computed of, factorials, swinging factorials: A246660, A246661
run length transforms, computed of, Fermat numbers (A000215): A246685
run length transforms, computed of, Fibonacci(n+1), Fibonacci(n+2) (A000045): A246028, A245564
run length transforms, computed of, floor(n/2)+1 (A008619): A278161
run length transforms, computed of, G.f.: (1+2*x)*(1-x)/((1-4*x)*(1-2*x)*(1+x)) (A255467): A255466
run length transforms, computed of, G.f.: (1+3*x)/((1-x)*(1+2*x)*(1-4*x)) (A255471): A255470
run length transforms, computed of, G.f.: (1+3*x)/((1+x)*(1-4*x)) (A255465): A255464
run length transforms, computed of, G.f.: (1-3*x^2+4*x^3)/((1-2*x)*(1-4*x+x^2)) (A253101): A253100
run length transforms, computed of, Jacobsthal numbers (as A001045(n+2)), and their squares: A071053, A246035
run length transforms, computed of, Lucas numbers (A000204): A246011
run length transforms, computed of, other sequences (1): A246031, A246039, A253065, A253066, A253069, A253071
run length transforms, computed of, other sequences (2): A253104, A255276, A255277, A255279, A255281, A255283
run length transforms, computed of, other sequences (3): A255295, A255298, A255300, A255302, A255304, A255443
run length transforms, computed of, other sequences (4): A255446, A255448, A255450, A255452, A255454, A255456
run length transforms, computed of, other sequences (5): A255458, A255460, A255468, A255473, A255475, A255477
run length transforms, computed of, Pell numbers (A000129): A245565
run length transforms, computed of, primes (as in A008578): A246029
run length transforms, computed of, primorials: A278159
run length transforms, computed of, sequence A001317: A247282
run length transforms, computed of, squares: A246595
run length transforms, computed of, wt (A000120): A246588

run length transforms: see also A246314, A247649, A247650, A278222
runs in binary expansion: A005811*
runs, lengths of: A000002
Russian: see also Index entries for sequences related to number of letters in n
Ruth-Aaron numbers: A006145, A006146, A039752, A039753, A054738
r_2(n): A004018


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools