login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A008438 Sum of divisors of 2n + 1. 61
1, 4, 6, 8, 13, 12, 14, 24, 18, 20, 32, 24, 31, 40, 30, 32, 48, 48, 38, 56, 42, 44, 78, 48, 57, 72, 54, 72, 80, 60, 62, 104, 84, 68, 96, 72, 74, 124, 96, 80, 121, 84, 108, 120, 90, 112, 128, 120, 98, 156, 102, 104, 192, 108, 110, 152, 114, 144, 182, 144, 133, 168 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Number of ways of writing n as the sum of 4 triangular numbers.

Bisection of A000203. - Omar E. Pol, Mar 14 2012

REFERENCES

B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 139 Ex. (iii).

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.

L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 19 eq. (6), and p. 283 eq. (8).

W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 12.

H. M. Farkas, I. Kra, Cosines and triangular numbers, Rev. Roumaine Math. Pures Appl., 46 (2001), 37-43.

N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 79, Eq. (32.31).

N. Koblitz, Introduction to Elliptic Curves and Modular Forms, Springer-Verlag, 1984, see p. 184, Prop. 4, F(z).

M. Koike, Modular forms on non-compact arithmetic triangle groups, preprint.

G. Polya, Induction and Analogy in Mathematics, vol. 1 of Mathematics and Plausible Reasoning, Princeton Univ. Press, 1954, page 92 ff.

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..20000 [First 10000 terms from T. D. Noe]

H. Cohen, Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271-285. MR0382192 (52 #3080)

M. D. Hirschhorn, The number of representations of a number by various forms, Discrete Mathematics 298 (2005), 205-211

K. Ono, S. Robins and P. T. Wahl, On the representation of integers as sums of triangular numbers, Aequationes mathematicae, August 1995, Volume 50, Issue 1-2, pp 73-94. Theorem 3 [Legendre].

H. Rosengren, Sums of triangular numbers from the Frobenius determinant, arXiv:math/0504272 [math.NT], 2005.

M. Somos, Introduction to Ramanujan theta functions

Min Wang, Zhi-Hong Sun, On the number of representations of n as a linear combination of four triangular numbers II, arXiv:1511.00478 [math.NT], 2015.

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

K. S. Williams, The parents of Jacobi's four squares theorem are unique, Amer. Math. Monthly, 120 (2013), 329-345.

FORMULA

Expansion of q^(-1/2) * (eta(q^2)^2 / eta(q))^4 = psi(q)^4 in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Apr 11 2004

Expansion of Jacobi theta_2(q)^4 / (16*q) in powers of q^2. - Michael Somos, Apr 11 2004

Euler transform of period 2 sequence [4, -4, 4, -4, ...]. - Michael Somos, Apr 11 2004

a(n) = b(2*n + 1) where b() is multiplicative and b(2^e) = 0^n, b(p^e) =(p^(e+1) - 1) / (p - 1) if p>2. - Michael Somos, Jul 07 2004

Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 8*w*v^2 + 16*w^2*v - u^2*w - Michael Somos, Apr 08 2005

Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^3), B(q^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w*(u + 9*w) - u*w*(u^2 + 9*w*u + 81*w^2).

Given g.f. A(x), then B(q) = q * A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6) where f(u1, u2, u3, u6) = u2^3 + u1^2*u6 + 3*u2*u3^2 + 27*u6^3 - u1*u2*u3 - 3*u1*u3*u6 - 7*u2^2*u6 - 21*u2*u6^2. - Michael Somos, May 30 2005

G.f.: Sum_{k>=0} (2k + 1) * x^k / (1 - x^(2k + 1)).

G.f.: (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Apr 11 2004

G.f. Sum_{k>=0} a(k) * x^(2k + 1) = x( * Prod_{k>0} (1 - x^(4*k))^2 / (1 - x^(2k)))^ 4 = x * (Sum_{k>0} x^(k^2 - k))^4 = Sum_{k>0} k * (x^k / (1 - x^k) - 3 * x^(2*k) / (1 - x^(2*k)) +2 * x^(4*k) / (1 - x^(4*k))). - Michael Somos, Jul 07 2004

Number of solutions of 2*n + 1 = (x^2 + y^2 + z^2 + w^2) / 4 in positive odd integers. - Michael Somos, Apr 11 2004

8 * a(n) = A005879(n) = A000118(2*n + 1). 16 * a(n) = A129588(n). a(n) = A000593(2*n + 1) = A115607(2*n + 1).

a(n) = A000203(2n+1). - Omar E. Pol, Mar 14 2012

G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = (1/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A096727. Michael Somos, Jun 12 2014

a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017

G.f.: exp(Sum_{k>=1} 4*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

EXAMPLE

Divisors of 9 are 1,3,9, so a(4)=1+3+9=13.

F_2(z) = eta(4z)^8/eta(2z)^4 = q + 4q^3 + 6q^5 +8q^7 + 13q^9 + ...

G.f. = 1 + 4*x + 6*x^2 + 8*x^3 + 13*x^4 + 12*x^5 + 14*x^6 + 24*x^7 + 18*x^8 + 20*x^9 + ...

B(q) = q + 4*q^3 + 6*q^5 + 8*q^7 + 13*q^9 + 12*q^11 + 14*q^13 + 24*q^15 + 18*q^17 + ...

MAPLE

A008438 := proc(n) numtheory[sigma](2*n+1) ; end proc: # R. J. Mathar, Mar 23 2011

MATHEMATICA

DivisorSigma[1, 2 # + 1] & /@ Range[0, 61] (* Ant King, Dec 02 2010 *)

a[ n_] := SeriesCoefficient[ D[ Series[ Log[ QPochhammer[ -x] / QPochhammer[ x]], {x, 0, 2 n + 1}], x], {x, 0 , 2n}]; (* Michael Somos, Oct 15 2019 *)

PROG

(PARI) {a(n) = if( n<0, 0, sigma( 2*n + 1))};

(PARI) {a(n) = if( n<0, 0, n = 2*n; polcoeff( sum( k=1, (sqrtint( 4*n + 1) + 1)\2, x^(k^2 - k), x * O(x^n))^4, n))}; /* Michael Somos, Sep 17 2004 */

(PARI) {a(n) = my(A); if( n<0, 0, n = 2*n; A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / eta(x^2 + A))^4, n))}; /* Michael Somos, Sep 17 2004 */

(Sage) ModularForms( Gamma0(4), 2, prec=124).1;  # Michael Somos, Jun 12 2014

(MAGMA) Basis( ModularForms( Gamma0(4), 2), 124) [2]; /* Michael Somos, Jun 12 2014 */

(Haskell)

a008438 = a000203 . a005408  -- Reinhard Zumkeller, Sep 22 2014

(MAGMA) [DivisorSigma(1, 2*n+1): n in [0..70]]; // Vincenzo Librandi, Aug 01 2017

CROSSREFS

Cf. A000118, A000593, A005879, A096727, A115607, A129588, A225699/A225700.

Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Cf. A000203, A005408, A099774.

Sequence in context: A151760 A273938 A121613 * A141641 A145284 A023560

Adjacent sequences:  A008435 A008436 A008437 * A008439 A008440 A008441

KEYWORD

nonn,easy,nice,changed

AUTHOR

N. J. A. Sloane

EXTENSIONS

Comments from Len Smiley, Enoch Haga

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 14:22 EDT 2019. Contains 328345 sequences. (Running on oeis4.)