This site is supported by donations to The OEIS Foundation.

# Index to OEIS: Section Br

# Index to OEIS: Section Br

- This is a section of the Index to the
**OEIS®**. - For further information see the main
**Index to OEIS**page. - Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]

** bracelets , sequences related to : **

- bracelets , A000029*, A005232, A005513-A005516, A007123, A032279-A032288, A073020, A078925
- bracelets, 3-colored, A005654, A005656, A027671*, A032240, A032294
- bracelets, 4-colored, A032241, A032275*, A032295
- bracelets, 5-colored, A032242, A032276*, A032296
- bracelets, aperiodic, A001371*, A032294-A032296, A045628, A045633
- bracelets, asymmetric, A032239*, A032240-A032242
- bracelets, balanced, A005648*, A006079, A006840, A045628, A045633
- bracelets, complements are equivalent, A000011*, A006080, A006840, A045633, A053656, A066313-A066316
- bracelets, identity, see bracelets, asymmetric
- bracelets, triangle, A052307*, A052308, A052309, A052310
- bracelets: see also Lyndon words
- bracelets: see also necklaces
- bracelets: see also A005595, A007148, A027670, A054499

bracket function: A000748, A000749, A000750, A001659, A006090

brackets, ways to arrange: see parentheses, ways to arrange

** braids, sequences related to : **

Braille: A079399, A072283

Bravais lattices: A256413*, A004030 (published incorrect version)

** Brazilian numbers , sequences related to : **

- Brazilian numbers, A125134
- Non-Brazilian numbers, A220570
- Composite Brazilian numbers, A220571
- Composite non-Brazilian numbers = Semiprimes non-Brazilian, A190300
- Odd Brazilian numbers, A257521
- Odd non-Brazilian numbers, A258165
- Brazilian primes constant or Decimal expansion of the sum of reciprocals of Brazilian primes, A306759
- Brazilian semiprimes,A307507
- Brazilian squares, A253260
- Brazilian primes, A085104
- Brazilian primes: 1 + p + p^2 + ... + p^k where p is prime, A023195
- Brazilian primes: 1 + n + n^2 + ... + n^k, n > 1, k > 1 where n is not prime, A285017
- Brazilian composites of the form 1 + b + b^2 + b^3 + ... + b^k, b > 1, k > 1, A325658
- Palindromes in base 10 that are Brazilian, A325322
- Palindromes in base 10 that are not Brazilian, A325323
- Primes non-Brazilian, A220627
- Repunit Brazilian numbers, A053696
- Repdigit Brazilians in base 10, A288068
- Super-Brazilian numbers, A287767
- Numbers whose all divisors > 1 are Brazilian, A308851
- Least k>2 such that (n^k-1)/(n-1) is Brazilian prime, A128164
- Smallest Brazilian prime in base n, A285642
- Smallest Brazilian composite in base n, A325659
- Legal generalized repunit prime numbers, A179625
- Brazilian primes of form k^2+k+1 and corresponding bases k: A002383, A002384
- Brazilian primes of form k^2+k+1 when base k is prime: A053183, A053182
- Brazilian primes of form k^2+k+1 when base k is nonprime: A185632, A182253
- Brazilian primes of form k^4+k^3+k^2+k+1 and corresponding bases k: A088548, A049409
- Brazilian primes of form k^4+k^3+k^2+k+1 when base k is prime: A190527, A065509
- Brazilian primes of form k^4+k^3+k^2+k+1 when base k is nonprime: A286095, A286094
- Brazilian primes of form k^6+k^5+k^4+k^3+k^2+k+1 and corresponding bases k: A088550, A100330
- Brazilian primes of form k^6+k^5+k^4+k^3+k^2+k+1 when base k is prime: A194257, A163268
- Brazilian primes of form k^6+k^5+k^4+k^3+k^2+k+1 when base k is nonprime: A194194, A288939
- Brazilian primes of form k^10+k^9+...+k^2+k+1 and corresponding bases k: A162861, A162862
- Brazilian primes of form k^10+k^9+...+k^2+k+1 when base k is prime: A286301, A240693
- Brazilian primes of form k^10+k^9+...+k^2+k+1 when base k is nonprime: A198244, A308238
- Numbers of ways such that a number n is Brazilian or not = beta(n), A220136
- Least positive integer that has exactly n representations as Brazilian number, A284758
- The least positive integer that is a repdigit of length > 2 in exactly n bases, A290969
- Smallest oblong number that is a repdigit of length > 2 in exactly n bases, A309193
- Numbers highly Brazilian, A066044
- Numbers highly Brazilian and highly composite, A279930
- Numbers highly composite not highly Brazilian, A309039
- Numbers highly Brazilian not highly composite, A309493
- Brazilian numbers which have only one representation, A288783
- Brazilian numbers which have exactly two representations, A290015
- Brazilian numbers which have exactly three representations, A290016
- Brazilian numbers which have exactly four representations, A290017
- Brazilian numbers which have exactly five representations, A290018
- Relation beta(n) = tau(n)/2 - 2, (= oblong numbers with beta"(n) = 0), A326378
- Relation beta(n) = tau(n)/2 - 1, A326379
- Relation beta(n) = tau(n)/2, A326380
- Relation beta(n) = tau(n)/2 + 1, A326381
- Relation beta(n) = tau(n)/2 + 2, A326382
- Relation beta(n) = tau(n)/2 + 3, A326383
- Relation beta(n) = tau(n)/2 + k, k >= 4, A326706
- Relation beta(n) = tau(n)/2 - 1, non-oblong numbers with beta"(n) = 0, A326386
- Relation beta(n) = tau(n)/2, non-oblong numbers with beta"(n) = 1, A326387
- Relation beta(n) = tau(n)/2 + 1, non-oblong numbers with beta"(n) = 2, A326388
- Relation beta(n) = tau(n)/2 + 2, non-oblong numbers with beta"(n) = 3, A326389
- Relation beta(n) = tau(n)/2 + k, k >= 3, non-oblong numbers with beta"(n) = r, r >= 4, A326705
- Relation beta(n) = tau(n)/2 -1, oblong numbers with beta"(n) = 1, A326384
- Relation beta(n) = tau(n)/2, oblong numbers with beta"(n) = 2, A326385
- Relation beta(n) = tau(n)/2 + k, k >= 1, oblong numbers with beta"(n) = r, r >= 3, A309062

Brazilian Portuguese: see also Index entries for sequences related to number of letters in n

** bricks , sequences related to : **

bridge hands, sorting: A065603

brilliant numbers: A078972*, A085647

Brun's constant: A065421, A005597, A038124

Buffon's needle: A060294*

building numbers from other numbers and the operations of addition, subtraction, etc: see under four 4's problem

bull (in graph theory): see A079577

Burnside's problem in group theory: A051576, A079682, A079683; also A004006, A116398

** Busy Beaver problem , sequences related to : **

- Busy Beaver problem: A028444*, A004147*, A060843*, A052200
- Busy Beaver problem: see also Turing machines

button, sewing on a, A192314*, A192332, A191563

** B_2 sequences , sequences related to : **

B_n lattice: coordination sequence for: see A022145

- This is a section of the Index to the
**OEIS®**. - For further information see the main
**Index to OEIS**page. - Please read Index: Instructions For Updating Index to OEIS before making changes to this page.
- If you did not find what you were looking for in this Index, you can always search the database for a particular word or phrase.
- Full list of sections:

[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]