

A069136


Numbers that are not the sum of 5 nonnegative cubes.


1



6, 7, 13, 14, 15, 20, 21, 22, 23, 34, 39, 41, 42, 46, 47, 48, 49, 50, 53, 58, 60, 61, 69, 76, 77, 79, 84, 85, 86, 87, 95, 98, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 117, 121, 122, 123, 124, 132, 139, 140, 147, 148, 151, 158, 159, 165
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Sequence is conjectured to be finite.
Comment from Richard C. Schroeppel, Sep 22 2010: It is conjectured that 7373170279850 is the largest number requiring more than four cubes (see Deshouillers et al.).


REFERENCES

Bohman, Jan and Froberg, CarlErik; Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118122.
F. Romani, Computations concerning Waring's problem, Calcolo, 19 (1982), 415431.


LINKS

T. D. Noe, Table of n, a(n) for n=1..4060
JeanMarc Deshouillers, Francois Hennecart and Bernard Landreau; appendix by I. Gusti Putu Purnaba, 7373170279850, Math. Comp. 69 (2000), 421439.
Index entries for sequences related to sums of cubes


CROSSREFS

Sums of k cubes, number of ways of writing n as, for k=1..9: A010057, A173677, A051343, A173678, A173679, A173680, A173676, A173681, A173682.
Sequence in context: A315835 A109605 A069198 * A277137 A047335 A182623
Adjacent sequences: A069133 A069134 A069135 * A069137 A069138 A069139


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Apr 08 2002


STATUS

approved



