This site is supported by donations to The OEIS Foundation.

Index to OEIS: Section Bi

From OeisWiki

Jump to: navigation, search

Index to OEIS: Section Bi


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


bicoverings: A002718, A002719
bigomega(n), number of primes dividing n (counted with repetition): A001222
binary codes, maximal size of constant weight, see A(n,d,w)
binary codes, maximal size of, see A(n, d)
binary codes: see codes, binary
binary digits: see binary expansion
binary entropy: A003314

binary expansion of n , sequences related to :
binary expansion of n: A000120* (weight), A000788*, A000069*, A001969*, A023416*, A059015*, A007088*, A070939*
elementary I, recurrences of form a(2n) = C*a(n) + P(n), a(2n+1) = Q(n), P,Q polynomial: A007814, A001511, A037227, A088705, A059139, A006519, A038712, A061393, A085296, A065916, A035263, A003602, A000265, A089265, A086799, A091512, A091519
elementary II, recurrences of form a(2n) = C*a(n) + f(n), a(2n+1) = g(n), f,g independent of a(n): A036987, A089263, A038189, A082392, A055975, A002516, A045674
binary expansion of n: produces a prime: A036952, A065720, A156059
binary expansion of n: see also (1) A005536, A003159, A006995, A006364, A054868, A070940, A070941, A070943, A001511, A029837, A037800
binary expansion of n: see also (2) A014081, A014082

binary matrices: see matrices, binary
binary numbers: A007088*
binary order of n: A029837, A070939
binary partitions: see partitions, binary
binary quadratic forms: see quadratic forms, binary, and the main article Binary Quadratic Forms and OEIS
Binary sequences:: A006840
binary strings, A007088*, A007931
binary strings, see also: A007039, A007040, A005598
binary vectors, A007088*, A007931
binary vectors, avoiding certain patterns: A000045, A006156, A006498, A040000, A062257, A062258, A062259, A121907, A079500, A164387, A188580, A188696, A188697, A188714, A188765
binary vectors, grandchildren of: A057606, A057607, A000124
Binary vectors:: A005253, A003440

binary weight of n, sequences related to :
binary weight of n: A000120*
binary weight of n: see also weight of n
binomial coefficient, sequences related to :
binomial coefficient identities (1): A000984, A002458, A005260, A006588, A007583, A036909, A036910, A036911, A036914, A037959, A037960, A037961
binomial coefficient identities (2): A037962, A037963, A037964, A037965, A037966, A037967, A037972, A037976, A037980, A045952, A055787, A068551
binomial coefficient identities (3): A100516, A100517
binomial coefficients, A000012* = binomial(n,0), A000027* = binomial(n,1), A000217* = binomial(n,2), A000292* = binomial(n,3), etc.
binomial coefficients, central: A000984*, A001405*, A001700
binomial coefficients, circular: A037306, A047996, A008965. A000031, A215251
binomial coefficients, LCM of:: A002944
binomial coefficients, occurrences of n as:: A003016
binomial coefficients, triangle of: A007318*
binomial coefficients: (1):: A005733, A005735, A005809, A001791, A005810, A000332, A002054, A000389, A002694, A003516
binomial coefficients: (2):: A000580, A002696, A000581, A000582, A001287, A001288
binomial coefficients: for q-binomials, see Gaussian binomial coefficients
binomial coefficients: sums:: A001527, A003161, A003162

Binomial moments:: A000910

binomial transform, sequences related to :
binomial transform: see Transforms file
binomial transforms:: A007442, A000371, A007476, A007443, A007317, A005331, A007405, A007472, A004211, A005572, A005494, A004212, A005021, A004213, A005011, A005327, A005014

binomial(n,2): A000217*
binomial(n,3): A000292*
binomial(n,4): A000332*
binomial(n,k): binomial coefficient n-choose-k (see A007318)

bipartite, sequences related to :
bipartite (1):: A007083, A007029, A000291, A006823, A006612, A002774, A007085, A005142, A000412, A004100
bipartite (2):: A001832, A005335, A005336, A007084, A002762, A002766, A002763, A006824, A006825, A007028
bipartite (3):: A002767, A000465, A002768, A002764, A000491, A002765, A002755, A002756, A002757, A002758, A002759
bipartite graphs: see also graphs, bipartite

biprimes: A001358
biprimes: see also semiprimes or semi-primes
birthday paradox: A014088, A033810, A050255, A050256, A051008, A064619

bisections, sequences related to :
bisections: A001519, A002478, A001906, A002878, A002287, A002286
bisections: see also dissections
Bishops problem, sequences related to :
Bishops problem:: A005633, A005631, A005635, A002465*, A005634, A005632

bits: see binary expansion
bitwise exclusive OR, see under XOR


[ Aa | Ab | Al | Am | Ap | Ar | Ba | Be | Bi | Bl | Bo | Br | Ca | Ce | Ch | Cl | Coa | Coi | Com | Con | Cor | Cu | Cy | Da | De | Di | Do | Ea | Ed | El | Eu | Fa | Fe | Fi | Fo | Fu | Ga | Ge | Go | Gra | Gre | Ha | He | Ho | Ia | In | J | K | La | Lc | Li | Lo | Lu | M | Mag | Map | Mat | Me | Mo | Mu | N | Na | Ne | Ni | No | Nu | O | Pac | Par | Pas | Pea | Per | Ph | Poi | Pol | Pos | Pow | Pra | Pri | Pro | Ps | Qua | Que | Ra | Rea | Rel | Res | Ro | Ru | Sa | Se | Si | Sk | So | Sp | Sq | St | Su | Sw | Ta | Te | Th | To | Tra | Tri | Tu | U | V | Wa | We | Wi | X | Y | Z | 1 | 2 | 3 | 4 ]


Personal tools