login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036914
a(n) = binomial(2*n,n)*binomial(3*n,2*n)^4.
1
1, 162, 303750, 995742720, 4202607543750, 20493770553668412, 109738295483524291584, 627433021349790289920000, 3765656995768668039930646470, 23460102529588600192836492187500, 150552597141762184641565143623272500, 989711604190467147276644388444241920000
OFFSET
0,2
COMMENTS
From Peter Bala, Aug 07 2016: (Start)
Compare with the identities:
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(3*n,k)^2*binomial(3*n - k,n)^2 = binomial(3n,n)^2*binomial(2*n,n) = A275047(n), and
Sum_{k = 0..2*n} (-1)^k*binomial(3*n,k)*binomial(3*n - k,n)^3 = binomial(3*n,n)*binomial(2*n,n) = (3*n)!/n!^3 = A006480(n). (Sprugnoli, Section 2.9, Table 10, p. 123).
Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)^2 = A000984(n). (End)
REFERENCES
The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Eq 21.1, page 72 (see the Formula section).
FORMULA
Sum_{k=0..2*n} (-1)^k*C(3*n, k)^3*C(3*n-k, n)^3 = (-1)^n*C(2*n, n)*C(3*n, 2*n)^4.
From Peter Bala, Aug 07 2016: (Start)
a(n) = (3*n)!^4/(n!^6*(2*n)!^3).
a(n) = A005809(n)^4 * A000984(n) = A005809(n)^3 * A006480(n) = A005809(n)^2 * A275047(n).
a(n) = {[x^n] (1 + x)^(3*n)}^4 * [x^n] (1 + x)^(2*n) = [x^n] G(x)^(162*n), where G(x) = 1 + x + 776*x^2 + 1633370*x^3 + 5060509158*x^4 + 19379170742458*x^5 + 84908023350007787*x^6 + ... appears to have integer coefficients.
exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^162, where F(x) = 1 + x + 938*x^2 + 2049791*x^3 + 6487994244*x^4 + 25309359070330*x^5 + 112932966264239483*x^6 + ... appears to have integer coefficients. (End)
a(n) ~ (9/16)*9^(6*n)/((Pi*n)^(5/2)*64^n). - Ilya Gutkovskiy, Aug 07 2016
MAPLE
seq((3*n)!^4/(n!^6*(2*n)!^3), n = 0..20); # Peter Bala, Aug 07 2016
MATHEMATICA
Table[Binomial[2n, n]Binomial[3n, 2n]^4, {n, 0, 11}] (* Michael De Vlieger, Aug 07 2016 *)
PROG
(Magma) [(n+1)*Binomial(3*n, 2*n)^4*Catalan(n): n in [0..30]]; // G. C. Greubel, Jun 22 2022
(SageMath) b=binomial; [b(2*n, n)*b(3*n, 2*n)^4 for n in (0..30)] # G. C. Greubel, Jun 22 2022
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved