This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036914 a(n) = C(2*n,n)*C(3*n,2*n)^4. 0
 1, 162, 303750, 995742720, 4202607543750, 20493770553668412, 109738295483524291584, 627433021349790289920000, 3765656995768668039930646470, 23460102529588600192836492187500, 150552597141762184641565143623272500, 989711604190467147276644388444241920000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES The right-hand side of a binomial coefficient identity in H. W. Gould, Combinatorial Identities, Morgantown, 1972; Eq 21.1 page 72 (see the Formula section). From Peter Bala, Aug 07 2016: (Start) Compare with the identities: Sum_{k = 0..2*n} (-1)^(n+k)*binomial(3*n,k)^2*binomial(3*n - k,n)^2 = binomial(3n,n)^2*binomial(2*n,n) = A275047(n), and Sum_{k = 0..2*n} (-1)^k*binomial(3*n,k)*binomial(3*n - k,n)^3 = binomial(3*n,n)*binomial(2*n,n) = (3*n)!/n!^3 = A006480(n). (Sprugnoli, Section 2.9, Table 10, p. 123). Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)^2 = A000984(n). (End) LINKS R. Sprugnoli, Riordan array proofs of identities in Gould's book FORMULA Sum_{k=0..2*n} (-1)^k*C(3*n, k)^3*C(3*n-k, n)^3 = (-1)^n*C(2*n, n)*C(3*n, 2*n)^4. From Peter Bala, Aug 07 2016: (Start) a(n) = (3*n)!^4/(n!^6*(2*n)!^3). a(n) = A005809(n)^4 * A000984(n) = A005809(n)^3 * A006480(n) = A005809(n)^2 * A275047(n). a(n) = {[x^n] (1 + x)^(3*n)}^4 * [x^n] (1 + x)^(2*n) = [x^n] G(x)^(162*n), where G(x) = 1 + x + 776*x^2 + 1633370*x^3 + 5060509158*x^4 + 19379170742458*x^5 + 84908023350007787*x^6 + ... appears to have integer coefficients. exp( Sum_{n >= 1} a(n)*x^n/n ) = F(x)^162, where F(x) = 1 + x + 938*x^2 + 2049791*x^3 + 6487994244*x^4 + 25309359070330*x^5 + 112932966264239483*x^6 + ... appears to have integer coefficients. (End) a(n) ~ (9/16)*9^(6*n)/((Pi*n)^(5/2)*64^n). - Ilya Gutkovskiy, Aug 07 2016 MAPLE seq((3*n)!^4/(n!^6*(2*n)!^3), n = 0..20); # Peter Bala, Aug 07 2016 MATHEMATICA Table[Binomial[2 n, n] Binomial[3 n, 2 n]^4, {n, 0, 11}] (* Michael De Vlieger, Aug 07 2016 *) CROSSREFS Cf. A000984, A005809, A006480, A275047. Sequence in context: A209965 A230837 A183812 * A214185 A214236 A030442 Adjacent sequences:  A036911 A036912 A036913 * A036915 A036916 A036917 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 03:02 EST 2016. Contains 278771 sequences.